SCALING OF DISTRIBUTION EIGENVECTORS IN A 1D ANDERSON MODEL

被引:2
作者
MOLINARI, L
机构
[1] Dipartimento di Fisica, Sezione INFN di Milano
关键词
D O I
10.1088/0953-8984/5/23/002
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
It is shown numerically that the distribution of squared components of eigenvectors of the Anderson 1D tight binding equation on lattices of finite lengths, is parametrized by the single scaling parameter x = xi(infinity)/N, where xi(infinity) is the localization length for the infinite lattice and N is the number of sites of the finite lattice.
引用
收藏
页码:L319 / L322
页数:4
相关论文
共 13 条
[1]   SCALING PROPERTIES OF THE EIGENVALUE SPACING DISTRIBUTION FOR BAND RANDOM MATRICES [J].
CASATI, G ;
IZRAILEV, F ;
MOLINARI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4755-4762
[2]   SCALING PROPERTIES OF BAND RANDOM MATRICES [J].
CASATI, G ;
MOLINARI, L ;
IZRAILEV, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1851-1854
[3]   SCALING OF THE INFORMATION LENGTH IN 1D TIGHT-BINDING MODELS [J].
CASATI, G ;
GUARNERI, I ;
IZRAILEV, F ;
FISHMAN, S ;
MOLINARI, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (01) :149-156
[4]   LYAPOUNOV EXPONENT OF THE ONE DIMENSIONAL ANDERSON MODEL - WEAK DISORDER EXPANSIONS [J].
DERRIDA, B ;
GARDNER, E .
JOURNAL DE PHYSIQUE, 1984, 45 (08) :1283-1295
[5]   EIGENVECTOR STATISTICS AND MULTIFRACTAL SCALING OF BAND RANDOM MATRICES [J].
EVANGELOU, SN ;
ECONOMOU, EN .
PHYSICS LETTERS A, 1990, 151 (6-7) :345-348
[6]   SCALING PROPERTIES OF LOCALIZATION IN RANDOM BAND MATRICES - A SIGMA-MODEL APPROACH [J].
FYODOROV, YV ;
MIRLIN, AD .
PHYSICAL REVIEW LETTERS, 1991, 67 (18) :2405-2409
[7]   ANALYTICAL DERIVATION OF THE SCALING LAW FOR THE INVERSE PARTICIPATION RATIO IN QUASI-ONE-DIMENSIONAL DISORDERED-SYSTEMS [J].
FYODOROV, YV ;
MIRLIN, AD .
PHYSICAL REVIEW LETTERS, 1992, 69 (07) :1093-1096
[8]  
MIRLIN A, 1993, UNPUB J PHYS A
[9]   ANOMALOUS SCALING AND GENERALIZED LYAPUNOV EXPONENTS OF THE ONE-DIMENSIONAL ANDERSON MODEL [J].
PALADIN, G ;
VULPIANI, A .
PHYSICAL REVIEW B, 1987, 35 (04) :2015-2020
[10]   EIGENFUNCTIONS IN ONE-DIMENSIONAL DISORDERED SYSTEMS .2. RESULTS AND DISCUSSION [J].
PAPATRIANTAFILLOU, C ;
ECONOMOU, EN .
PHYSICAL REVIEW B, 1976, 13 (02) :920-928