On linearization method to MHD boundary layer convective heat transfer with low pressure gradient

被引:27
作者
Ahmed, Mohammed A. Mohammed [1 ]
Mohammed, Mohammed E. [1 ]
Khidir, Ahmed A. [1 ]
机构
[1] Alneelain Univ, Fac Technol Math Sci & Stat, POB 12702, Khartoum, Sudan
关键词
Successive linearization method; Magnetohydrodynamics (MHD); Boundary layer convective heat transfer; Pressure gradient; Viscous dissipation;
D O I
10.1016/j.jppr.2015.04.001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The paper highlights the application of a recent semi-numerical successive linearization method (SLM) in solving highly coupled, nonlinear boundary value problem. The method is presented in detail by solving the problem of boundary layer convective heat transfer with low pressure gradient in the presence of viscous dissipation and radiation effects. The effects of the parameters on the flow are investigated. The velocity, temperature, skin friction, and heat transfer coefficients have been obtained and discussed for various physical parametric values. (C) 2015 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 30 条
[1]   Convection from an inverted cone in a porous medium with cross-diffusion effects [J].
Awad, F. G. ;
Sibanda, P. ;
Motsa, S. S. ;
Makinde, O. D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (05) :1431-1441
[2]  
Bird R.B., 2002, TRANSPORT PHENOMENA, V2nd
[3]  
Cai XC, 2006, INT J NONLIN SCI NUM, V7, P109
[4]  
Canuto C., 2012, SPECTRAL METHODS FLU
[5]   Homotopy-perturbation method for pure nonlinear differential equation [J].
Cveticanin, L. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1221-1230
[6]   ACCURACY AND SPEED IN COMPUTING THE CHEBYSHEV COLLOCATION DERIVATIVE [J].
DON, WS ;
SOLOMONOFF, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) :1253-1268
[7]  
El-Shahed M., 2008, INT J NONLINEAR SCI, V6, P163
[8]   An approximation of the analytical solution of the Jeffery-Hamel flow by decomposition method [J].
Esmaili, Q. ;
Ramiar, A. ;
Alizadeh, E. ;
Ganji, D. D. .
PHYSICS LETTERS A, 2008, 372 (19) :3434-3439
[9]  
Fathizadeh M., 2012, IRANIAN J CHEM ENG, V9, P33
[10]   Variational iteration method - a kind of non-linear analytical technique: Some examples [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :699-708