Planned Missing Data Designs for Spline Growth Models in Salivary Cortisol Research

被引:11
|
作者
Hogue, Candace [1 ]
Pornprasertmanit, Sunthud [2 ,3 ]
Fry, Mary [1 ]
Rhemtulla, Mijke [4 ]
Little, Todd [5 ]
机构
[1] Univ Kansas, Dept Hlth Sport & Exercise Sci, 1301 Sunnyside Ave, Lawrence, KS 66046 USA
[2] Univ Kansas, Dept Psychol, Lawrence, KS 66045 USA
[3] Univ Kansas, Ctr Res Methods & Data Anal, Lawrence, KS 66045 USA
[4] Univ Amsterdam, Dept Psychol, Amsterdam, Netherlands
[5] Texas Tech Univ, Coll Educ, Inst Measurement Methodol Anal & Policy, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
planned missing data design; salivary cortisol; measurement efficiency; growth curve modeling; missing data;
D O I
10.1080/1091367X.2013.831766
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Salivary cortisol is often used as an index of physiological and psychological stress in exercise science and psychoneuroendocrine research. A primary concern when designing research studies examining cortisol stems from the high cost of analysis. Planned missing data designs involve intentionally omitting a random subset of observations from data collection, reducing both the cost of data collection and participant burden. These designs have the potential to result in more efficient, cost-effective analyses with minimal power loss. Using salivary cortisol data from a previous study (Hogue, Fry, Fry, & Pressman, 2013), this article examines statistical power and estimated costs of six different planned missing data designs using growth curve modeling. Results indicate that using a planned missing data design would have provided the same results at a lower cost relative to the traditional, complete data analysis of salivary cortisol.
引用
收藏
页码:310 / 325
页数:16
相关论文
共 50 条
  • [1] Planned missing data designs in psychological research
    Graham, John W.
    Taylor, Bonnie J.
    Olchowski, Allison E.
    Cumsille, Patricio E.
    PSYCHOLOGICAL METHODS, 2006, 11 (04) : 323 - 343
  • [2] Planned Missing Data Designs for Research in Cognitive Development
    Rhemtulla, Mijke
    Little, Todd D.
    JOURNAL OF COGNITION AND DEVELOPMENT, 2012, 13 (04) : 425 - 438
  • [3] Planned Missing Data Designs in Educational Psychology Research
    Rhemtulla, Mijke
    Hancock, Gregory R.
    EDUCATIONAL PSYCHOLOGIST, 2016, 51 (3-4) : 305 - 316
  • [4] Reflection on modern methods: planned missing data designs for epidemiological research
    Rioux, Charlie
    Lewin, Antoine
    Odejimi, Omolola A.
    Little, Todd D.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (05) : 1702 - 1711
  • [5] Planned Missing Data Designs for Developmental Researchers
    Little, Todd D.
    Rhemtulla, Mijke
    CHILD DEVELOPMENT PERSPECTIVES, 2013, 7 (04) : 199 - 204
  • [6] Latent Interaction Modeling with Planned Missing Data Designs
    Nord, Jayden
    Bovaird, James A.
    Fritz, Matthew S.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (04) : 602 - 612
  • [7] Testing the Clinical Implications of Planned Missing Data Designs
    Huff, Scott C.
    Anderson, Shayne R.
    Tambling, Rachel B.
    JOURNAL OF MARITAL AND FAMILY THERAPY, 2016, 42 (02) : 313 - 325
  • [8] Planned missing-data designs in analysis of change
    Graham, JW
    Taylor, BJ
    Cumsille, PE
    NEW METHODS FOR THE ANALYSIS OF CHANGE, 2001, : 335 - 353
  • [9] Two-method planned missing designs for longitudinal research
    Garnier-Villarreal, Mauricio
    Rhemtulla, Mijke
    Little, Todd D.
    INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT, 2014, 38 (05) : 411 - 422
  • [10] Abstract: An Evaluation of Planned Missing Data Designs in Large Surveys
    Su, Dan
    MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (01) : 146 - 146