EEG-based Brain-computer Interface for Automating Home Appliances

被引:14
|
作者
Alshbatat, Abdel Ilah N. [1 ]
Vial, Peter J. [2 ]
Premaratne, Prashan [2 ]
Tran, Le C. [2 ]
机构
[1] Tafila Tech Univ, Tafila, Jordan
[2] Univ Wollongong, Wollongong, NSW, Australia
关键词
Brain-Computer Interface (BCI); Electroencephalogram (EEG); EMOTIV EPOC Neuroheadset; Signal Processing;
D O I
10.4304/jcp.9.9.2159-2166
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An EEG-based brain-computer system for automating home appliances is proposed in this study. Brain-computer interface (BCI) system provides direct pathway between human brain and external computing resources or external devices. The system translates thought into action without using muscles through a number of electrodes attached to the user's scalp. The BCI technology can be used by disabled people to improve their independence and maximize their capabilities at home. In this paper, a novel BCI system was developed to control home appliances from a dedicated Graphical User Interface (GUI). The system is structured with six units: EMOTIV EPOC headset, personal computer, Flyport module, quad band GSM/GPRS communication module, LinkSprite JPEG Colour camera, and PIC-P40 board. EMOTIV EPOC headset detects and records neuronal electrical activities that reflect user's intent from different locations on the scalp. Those activities are then sent to the computer to extract specific signal features. Those features are then translated into commands to operate all appliances at home. The proposed system has been implemented, constructed, and tested. Experimental results demonstrates the feasibility of our proposed BCI system in controlling home appliances based on the user's physiological states.
引用
收藏
页码:2159 / 2166
页数:8
相关论文
共 50 条
  • [1] An EEG-based brain-computer interface for gait training
    Liu, Dong
    Chen, Weihai
    Lee, Kyuhwa
    Pei, Zhongcai
    Millan, Jose del R.
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6755 - 6760
  • [2] An EEG-Based Brain-Computer Interface for Emotion Recognition
    Pan, Jiahui
    Li, Yuanqing
    Wang, Jun
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2063 - 2067
  • [3] AN EEG-BASED BRAIN-COMPUTER INTERFACE FOR CURSOR CONTROL
    WOLPAW, JR
    MCFARLAND, DJ
    NEAT, GW
    FORNERIS, CA
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1991, 78 (03): : 252 - 259
  • [4] Wadsworth EEG-based brain-computer interface (BCI)
    Wolpaw, JR
    McFarland, DJ
    Vaughan, TM
    PSYCHOPHYSIOLOGY, 1999, 36 : S16 - S16
  • [5] A comprehensive review of EEG-based brain-computer interface paradigms
    Abiri, Reza
    Borhani, Soheil
    Sellers, Eric W.
    Jiang, Yang
    Zhao, Xiaopeng
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
  • [6] EEG-Based Brain-Computer Interface for Control of Assistive Devices
    Kapralov, Nikolay, V
    Ekimovskii, Jaroslav, V
    Potekhin, Vyacheslav V.
    CYBER-PHYSICAL SYSTEMS AND CONTROL, 2020, 95 : 536 - 543
  • [7] An EEG-based Brain-Computer Interface for Attention State Recognition
    Tang, Yongchao
    Huang, Haiyun
    2020 INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS), 2020, : 100 - 104
  • [8] An EOG/EEG-Based Hybrid Brain-Computer Interface for Chess
    Choi, Jin Woo
    Rho, Eojin
    Huh, Sejoon
    Jo, Sungho
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 129 - 134
  • [9] An enhancement of EEG-based brain-computer interface communication software
    Yamawaki, Nobuyuki
    NEUROSCIENCE RESEARCH, 2009, 65 : S182 - S182
  • [10] Prosthetic control by an EEG-based brain-computer interface (BCI)
    Guger, C
    Harkam, W
    Hertnaes, C
    Pfurtscheller, G
    ASSISTIVE TECHNOLOGY ON THE THRESHOLD OF THE NEW MILLENNIUM, 1999, 6 : 590 - 595