MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTICALLY ORDERED RANDOM VARIATES

被引:14
作者
ROBERTSON, T [1 ]
WRIGHT, FT [1 ]
机构
[1] UNIV IOWA, DEPT STATISTICS, 101 MACLEAN HALL, IOWA CITY, IA 52242 USA
关键词
D O I
10.1214/aos/1176342712
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:528 / 534
页数:7
相关论文
共 8 条
[1]   ON THE CONVERGENCE OF EMPIRIC DISTRIBUTION FUNCTIONS [J].
BLUM, JR .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (03) :527-529
[2]   MAXIMUM LIKELIHOOD ESTIMATION OF DISTRIBUTIONS OF 2 STOCHASTICALLY ORDERED RANDOM VARIABLES [J].
BRUNK, HD ;
FRANCK, WE ;
HANSON, DL ;
HOGG, RV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1966, 61 (316) :1067-&
[3]   GENERALIZATIONS OF GLIVENKO-CANTELLI THEOREM [J].
DEHARDT, J .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :2050-&
[4]  
DEHARDT J, 1970, ANN MATH STAT, V41, P2177, DOI 10.1214/aoms/1177696726
[5]  
Kiefer J., 1961, PAC J MATH, V11, P649, DOI DOI 10.2140/PJM.1961.11.649
[6]   ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SIGMA-LATTICE [J].
ROBERTSON, T .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :482-+
[7]   MULTIPLE ISOTONIC MEDIAN REGRESSION [J].
ROBERTSON, T ;
WRIGHT, FT .
ANNALS OF STATISTICS, 1973, 1 (03) :422-432
[8]  
ROBERTSON T, 1972, 16 U IOW STAT DEP TE