MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS

被引:0
作者
Jin, Yinghua [1 ]
Choi, Q-Heung [2 ]
机构
[1] Jiangnan Univ, Sch Sci, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[2] Inha Univ, Dept Math Educ, Incheon 402751, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2010年 / 18卷 / 04期
关键词
Dirichlet boundary condition; linking theorem; eigenvalue;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in RN. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 10 条
[1]  
Choi Q. H., 1993, APPL ANAL, V50, P71
[2]   Nonlinearity and nontrivial solutions of fourth order semilinear elliptic equations [J].
Choi, QH ;
Jin, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) :224-234
[3]  
Jung Tacksun, 2008, EXISTENCE 4 SOLUTION
[4]   GLOBAL BIFURCATION AND A THEOREM OF TARANTELLO [J].
LAZER, AC ;
MCKENNA, PJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (03) :648-655
[5]  
LI S, 1993, NONLINEAR ANAL-THEOR, V1, P211
[6]  
Liu J.Q., NONLINEAR ANAL, V51
[7]   Multiplicity results for a fourth-order semilinear elliptic problem [J].
Micheletti, AM ;
Pistoia, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (07) :895-908
[8]   Multiple nontrivial solutions for a floating beam equation via critical point theory [J].
Micheletti, AM ;
Saccon, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) :157-179
[9]   On the critical dimension of a fourth order elliptic problem with negative exponent [J].
Moradifam, Amir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :594-616
[10]  
Tarantello G., 1992, DIFFER INTEGRAL EQU, V5, P561