LONG MEMORY STOCHASTIC VOLATILITY IN OPTION PRICING

被引:3
作者
Fedotov, Sergei [1 ]
Tan, Abby [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
关键词
Long memory; stochastic volatility; option pricing;
D O I
10.1142/S0219024905003013
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The aim of this paper is to present a stochastic model that accounts for the effects of a long-memory in volatility on option pricing. The starting point is the stochastic Black-Scholes equation involving volatility with long-range dependence. We define the stochastic option price as a sum of classical Black-Scholes price and random deviation describing the risk from the random volatility. By using the fact that the option price and random volatility change on different time scales, we derive the asymptotic equation for this deviation involving fractional Brownian motion. The solution to this equation allows us to find the pricing bands for options.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 33 条
[1]  
Aurell E., 1998, INT J THEOR APPL FIN, V1, P1
[2]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[3]  
Beran J., 1994, STAT LONG MEMORY PRO
[4]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[5]   The detection and estimation of long memory in stochastic volatility [J].
Breidt, FJ ;
Crato, N ;
de Lima, P .
JOURNAL OF ECONOMETRICS, 1998, 83 (1-2) :325-348
[6]  
Campbell JY, 1996, ECONOMETRICS FINANCI, V2nd, DOI [10.1515/9781400830213-004, DOI 10.1515/9781400830213-004]
[7]   Long memory continuous time models [J].
Comte, F ;
Renault, E .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :101-149
[8]   Long memory in continuous-time stochastic volatility models [J].
Comte, F ;
Renault, E .
MATHEMATICAL FINANCE, 1998, 8 (04) :291-323
[9]  
Comte F., 2001, WORKING PAPER
[10]  
Courant R., 1989, METHODS MATH PHYS, V2