EINSTEIN-LIKE APPROXIMATION FOR HOMOGENIZATION WITH SMALL CONCENTRATION .2. NAVIER-STOKES EQUATION

被引:19
作者
LEVY, T
SANCHEZPALENCIA, E
机构
[1] CNRS,LA 229,F-75005 PARIS,FRANCE
[2] UNIV PARIS 4,MECAN THEOR LAB,LA 229,F-75230 PARIS,FRANCE
关键词
MATHEMATICAL TECHNIQUES - Differential Equations - SUSPENSIONS;
D O I
10.1016/0362-546X(85)90034-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors obtain small concentration approximations of the fluid flow equations for a suspension of either fluid drops or solid particles in a viscous fluid. They start from the equations obtained by the homogenization method for the motion of a viscous fluid containing a periodic (or locally periodic) distribution of solid particles. The homogenization of Stokes equation can be extended to the case of a not slow motion of a viscous fluid containing viscous drops of another fluid. They give the asymptotic behavior of these schemes (with particles or drops) when the concentration of inclusions is small.
引用
收藏
页码:1255 / 1268
页数:14
相关论文
共 14 条
[1]  
BATCHELOR GK, 1967, FLUID DYNAMICS
[2]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[3]   DYNAMIC THEORY OF SUSPENSIONS WITH BROWNIAN EFFECTS [J].
CAFLISCH, R ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :885-906
[5]  
GEYMONAT G, 1981, ACAD SCI PARIS, V293, P179
[6]  
Ladyzhenskaya O., 1963, MATH THEORY VISCOUS
[7]  
LANDAU L, 1971, MECANIQUE FLUIDES
[8]   FLUID-FLOW THROUGH AN ARRAY OF FIXED PARTICLES [J].
LEVY, T .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (01) :11-23
[9]   SUSPENSION OF SOLID PARTICLES IN A NEWTONIAN FLUID [J].
LEVY, T ;
SANCHEZPALENCIA, E .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1983, 13 (01) :63-78
[10]  
LEVY T, 1983, ACAD SCI PARIS, V297, P193