PAINLEVE ANALYSIS AND REDUCIBILITY TO THE CANONICAL FORM FOR THE GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION

被引:22
作者
BRUGARINO, T
GRECO, AM
机构
[1] Dipartimento di Matematica ed Applicazioni, Universita di Palermo, 90123 Palermo, Via Archirafi
关键词
D O I
10.1063/1.529095
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The most general Kadomtsev-Petviashvili (KP) type equation, [u(t) + a(t,x,y)u + b(t,x,y)u(x) + c(t,x,y)uu(x) + d(t,x,y)u(xxx)]x + k(t,x,y)u(yy) = e(t,x,y), is studied and the conditions for the coefficients, in order that it owns complete integrability, are determined via a Painleve test. Finally, it is proved that the above conditions are the same as those requested for reducing the equation to the canonical form via suitable transformations.
引用
收藏
页码:69 / 71
页数:3
相关论文
共 25 条
[1]  
BRUGARINO T, 1990, CR ACAD SCI I-MATH, V310, P385
[2]   GENERALIZED TWO-DIMENSIONAL BURGERS AND KADOMTSEV-PETVIASHVILI EQUATIONS AND COLLIDING SOLITONS [J].
BRUGARINO, T ;
PANTANO, P .
LETTERE AL NUOVO CIMENTO, 1984, 41 (06) :187-190
[4]  
BRUGARINO T, 1983, EQUADIFF 82, P107
[5]  
Burgers JM, 1940, P K NED AKAD WETENSC, V43, P2
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]   THE INVERSE SCATTERING TRANSFORMS FOR CERTAIN TYPES OF VARIABLE-COEFFICIENT KDV EQUATIONS [J].
DAI, HH ;
JEFFREY, A .
PHYSICS LETTERS A, 1989, 139 (08) :369-372
[8]  
DAVID D, 1989, STUD APPL MATH, V80, P1
[9]  
DRYUMA VS, 1974, JETP LETT+, V19, P387
[10]  
DRYUMA VS, 1983, SOV MATH DOKL, V27, P6