Law of Iterated Logarithm and Strong Consistency in Poisson Regression Model Selection

被引:0
作者
Qian, Guogi [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2010年 / 3卷 / 03期
关键词
Law of iterated logarithm; Poisson regression; Maximum likelihood estimator; Model selection; Strong consistency;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first derive a law of iterated logarithm for the maximum likelihood estimator of the parameters in a Poisson regression model. We then use this result to establish the strong consistency of a class of model selection criteria in Poisson regression model selection. We show that under some general conditions, a model selection criterion, which consists of a minus maximum log-likelihood and a penalty term, will select the simplest correct model almost surely if the penalty term increases with model dimension and has an order in between O(log log n) and O(n).
引用
收藏
页码:417 / 434
页数:18
相关论文
共 20 条