ASYMPTOTIC-BEHAVIOR OF ALMOST-ORBITS OF NONLINEAR SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN HILBERT-SPACES

被引:1
作者
TAN, KK [1 ]
XU, HK [1 ]
机构
[1] E CHINA UNIV CHEM TECHNOL,INST MATH,SHANGHAI 200237,PEOPLES R CHINA
关键词
ALMOST-ORBIT; ASYMPTOTICALLY NONEXPANSIVE SEMIGROUP; WEAKLY ASYMPTOTICALLY REGULAR; NONEXPANSIVE RETRACTION; FIXED POINT; METRIC PROJECTION; ASYMPTOTIC CENTER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a nonempty closed convex subset of a Hilbert space H, F = {T(t): t > 0} be a continuous nonlinear asymptotically nonexpansive semigroup acting on C with a nonempty fixed point set F (F) , and u: [0, infinity) --> C be an almost-orbit of F. Then {u(t)} almost converges weakly to a fixed point of F, i.e., there exists an element y in F(F) such that weak-lim 1/t integral-t/0 u(r + h)dr = y uniformly for h greater-than-or-equal-to 0. This implies that {u(t)} converges weakly to a fixed point of F if and only if {u(t + h) - u(t)} converges weakly to zero as t tends to infinity for each h greater-than-or-equal-to 0.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 11 条