A SCHUR METHOD FOR BALANCED-TRUNCATION MODEL-REDUCTION

被引:397
作者
SAFONOV, MG
CHIANG, RY
机构
关键词
D O I
10.1109/9.29399
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:729 / 733
页数:5
相关论文
共 10 条
[1]  
ENNS D, 1984, THESIS STANFORD U ST
[2]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193
[3]  
Golub G. H., 2013, MATRIX COMPUTATIONS, V3
[4]   NUMERICAL-SOLUTION OF THE STABLE, NONNEGATIVE DEFINITE LYAPUNOV EQUATION [J].
HAMMARLING, SJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (03) :303-323
[5]   SCHUR METHOD FOR SOLVING ALGEBRAIC RICCATI-EQUATIONS [J].
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (06) :913-921
[6]   COMPUTATION OF SYSTEM BALANCING TRANSFORMATIONS AND OTHER APPLICATIONS OF SIMULTANEOUS DIAGONALIZATION ALGORITHMS [J].
LAUB, AJ ;
HEATH, MT ;
PAIGE, CC ;
WARD, RC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (02) :115-122
[7]  
LAUB AJ, 1980, AUG P JOINT AUT CONT
[9]  
STEWART GW, 1973, INTRO MATRIX COMPUTA, P278
[10]  
TOMBS MS, 1986, OUEL164786 OXF U DEP