An effective similarity measure via genetic algorithm for Content-Based Image Retrieval with extensive features

被引:2
作者
Syam, Baddeti [1 ]
Rao, Yerravarapu Srinivasa [2 ]
机构
[1] Mandava Inst Engn & Technol, Jaggayyapet 521275, Andhra Prades, India
[2] Andhra Univ, AU Coll Engn, Instrument Technol Dept, Visakhapatnam, Andhra Prades, India
关键词
CBIR; content based image retrieval; GA; genetic algorithm; SED; squared euclidean distance; extensive features; imaging systems; signals and systems; shape feature; similarity measure;
D O I
10.1504/IJSISE.2012.046742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the aid of image content, the relevant images can be extracted from the image in the Content Based Image Retrieval (CBIR) system. Concise feature sets limit the retrieval efficiency, to eliminate this shape, colour, texture and contourlet features are extracted. For retrieving relevant images, the optimisation technique Genetic Algorithm (GA) is utilised and for similarity measure Squared Euclidean Distance (SED) is utilised for comparing query image featureset and database image featureset. Hence, from GA based similarity measure, relevant images are retrieved and evaluated by querying different images.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 38 条
  • [1] [Anonymous], IEEE C COMP VIS PATT
  • [2] Bach J. R., 1996, SPIE C STOR RETR IM
  • [3] Bagherjeiran A., 2005, IEEE JOINT C DIG LIB
  • [4] Banerjee M., 2003, 12 IEEE INT C FUZZ S
  • [5] Supervised learning of semantic classes for image annotation and retrieval
    Carneiro, Gustavo
    Chan, Antoni B.
    Moreno, Pedro J.
    Vasconcelos, Nuno
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (03) : 394 - 410
  • [6] French J.C., 2003, IEEE JOINT C DIG LIB
  • [7] Goldberg DE, 1989, GENETIC ALGORITHMS S
  • [8] He J., 2004, IEEE INT C IM PROC B
  • [9] Hiremath P.S., 2008, INT J IMAGE PROCESS, V2, P10
  • [10] Hiroyasu T., 2004, TECHNICAL REPORT