Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

被引:29
作者
Jia, Gengjie [1 ]
Stephanopoulos, Gregory [2 ]
Gunawan, Rudiyanto [3 ]
机构
[1] Singapore MIT Alliance, Chem & Pharmaceut Engn, Singapore 117576, Singapore
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
来源
METABOLITES | 2012年 / 2卷 / 04期
关键词
ensemble modeling; incremental identification; dynamic flux estimation; independent parameter set; generalized mass action model;
D O I
10.3390/metabo2040891
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional "best-fit" models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics.
引用
收藏
页码:891 / 912
页数:22
相关论文
共 42 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
BARD Y, 1974, NONLINEAR PARAMETER
[3]   Incremental and simultaneous identification of reaction kinetics: methods and comparison [J].
Bardow, A ;
Marquardt, W .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (13) :2673-2684
[4]   An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa [J].
Battogtokh, D ;
Asch, DK ;
Case, ME ;
Arnold, J ;
Schüttler, HB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16904-16909
[5]  
Beck JV., 1977, PARAMETER ESTIMATION
[6]   Incremental identification of kinetic models for homogeneous reaction systems [J].
Brendel, Marc ;
Bonvin, Dominique ;
Marquardt, Wolfgang .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (16) :5404-5420
[7]   Dynamic modeling of the central carbon metabolism of Escherichia coli [J].
Chassagnole, C ;
Noisommit-Rizzi, N ;
Schmid, JW ;
Mauch, K ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) :53-73
[8]   Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods [J].
Chis, Oana-Teodora ;
Banga, Julio R. ;
Balsa-Canto, Eva .
PLOS ONE, 2011, 6 (11)
[9]   Estimation of dynamic flux profiles from metabolic time series data [J].
Chou, I-Chun ;
Voit, Eberhard O. .
BMC SYSTEMS BIOLOGY, 2012, 6
[10]   Recent developments in parameter estimation and structure identification of biochemical and genomic systems [J].
Chou, I-Chun ;
Voit, Eberhard O. .
MATHEMATICAL BIOSCIENCES, 2009, 219 (02) :57-83