TOTAL EXTENSIONS OF EFFECT ALGEBRAS

被引:17
作者
GUDDER, S
机构
[1] Department of Mathematics and Computer Science, University of Denver, Denver, 80208, Colorado
关键词
EFFECT ALGEBRAS; QUANTUM STRUCTURES; TOTAL EXTENSIONS;
D O I
10.1007/BF02187348
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that if the natural order on a total extension (P) over bar of an effect algebra P coincides with the order on P, then (P) over bar is unique. The structure of (P) over bar is called a QI-algebra. It is shown that a QI-algebra is less general than a QMV-algebra, but that a QI-algebra is equivalent to a quasi-linear QMV-algebra. Some examples are given and the properties of these structures are studied.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 11 条
  • [1] CHANG CC, 1957, T AM MATH SOC, V88, P467
  • [2] CHANG CC, 1958, T AM MATH SOC, V89, P74
  • [3] DALLA ML, IN PRESS F PHYS
  • [4] DVURECENSKIJ A, IN PRESS T AM MATH S
  • [5] FOULIS D, IN PRESS F PHYS
  • [6] GIUNTINI R, IN PRESS UNSHARP ORT
  • [7] GIUNTINI R, IN PRESS QUANTUM MV
  • [8] Kopka F., 1994, Mathematica Slovaca, V44, P21
  • [9] Kopka F., 1992, TATRA MOUNTAINS MATH, V1, P83
  • [10] INTERPRETATION OF AF CSTAR-ALGEBRAS IN LUKASIEWICZ SENTENTIAL CALCULUS
    MUNDICI, D
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (01) : 15 - 63