CONVEXITY DEPENDENT MORPHOLOGICAL TRANSFORMATIONS FOR MODE DETECTION IN CLUSTER-ANALYSIS

被引:14
作者
ZHANG, RD [1 ]
POSTAIRE, JG [1 ]
机构
[1] UNIV LILLE 1,CTR AUTOMAT,F-59655 VILLENEUVE DASCQ,FRANCE
关键词
CLUSTERING; CONVEXITY; MATHEMATICAL MORPHOLOGY; MODE DETECTION;
D O I
10.1016/0031-3203(94)90023-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An approach to unsupervised pattern classification is discussed, based on both the mathematical morphology and convexity analysis of the underlying probability density function. The density function, which is estimated from the input data, is dilated when it is concave and eroded when it is convex. Iterations of these convexity dependent morphological transformations tend to enhance the modes and to enlarge the valleys of the underlying p.d.f., so that mode detection becomes trivial. Examples of the performance of the clustering scheme based on the so-detected modes are given using artificially generated data sets.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 17 条
[1]  
BALL GH, 1965, AD6999616
[2]  
Devijver PA, 1982, PATTERN RECOGNITION
[3]  
FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330
[4]   IMAGE-ANALYSIS USING MATHEMATICAL MORPHOLOGY [J].
HARALICK, RM ;
STERNBERG, SR ;
ZHUANG, XH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (04) :532-550
[5]   LOCALLY SENSITIVE METHOD FOR CLUSTER-ANALYSIS [J].
KITTLER, J .
PATTERN RECOGNITION, 1976, 8 (01) :23-33
[6]  
LECOCQ CB, 1991, SYMBOLIC-NUMERIC DATA ANALYSIS AND LEARNING, P173
[7]  
MATHERON G., 1975, RANDOM SETS INTEGRAL
[8]   Capacity and surface [J].
Minkowski, H .
MATHEMATISCHE ANNALEN, 1903, 57 :447-495
[9]  
MIZOGUCHI R, 1976, IEEE T COMPUT, V25, P1109, DOI 10.1109/TC.1976.1674561
[10]   AN APPROXIMATE SOLUTION TO NORMAL MIXTURE IDENTIFICATION WITH APPLICATION TO UNSUPERVISED PATTERN-CLASSIFICATION [J].
POSTAIRE, JG ;
VASSEUR, CPA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1981, 3 (02) :163-179