ON THE MAXIMUM PRINCIPLE FOR VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS IN GENERAL DOMAINS

被引:0
作者
Dolcetta, I. Capuzzo [1 ]
Vitolo, A. [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
[2] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
来源
MATEMATICHE | 2007年 / 62卷 / 02期
关键词
Fully nonlinear elliptic equations; maximum principle; viscosity solutions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the validity of the Maximum Principle for viscosity solutions of fully nonlinear second order elliptic equations in general unbounded domains under suitable structure conditions on the equation allowing notably quadratic growth in the gradient terms.
引用
收藏
页码:69 / 91
页数:23
相关论文
共 50 条
[41]   Symmetry and spectral properties for viscosity solutions of fully nonlinear equations [J].
Birindelli, Isabeau ;
Leoni, Fabiana ;
Pacella, Filomena .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (04) :409-428
[42]   Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations: Rate of Convergence Estimates [J].
Camilli, Fabio ;
Cesaroni, Annalisa ;
Marchi, Claudio .
ADVANCED NONLINEAR STUDIES, 2011, 11 (02) :405-428
[43]   ABP and global Holder estimates for fully nonlinear elliptic equations in unbounded domains [J].
Birindelli, I. ;
Dolcetta, I. Capuzzo ;
Vitolo, A. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)
[44]   Singular Solutions of Fully Nonlinear Elliptic Equations and Applications [J].
Scott N. Armstrong ;
Boyan Sirakov ;
Charles K. Smart .
Archive for Rational Mechanics and Analysis, 2012, 205 :345-394
[45]   THE REGULARITY OF VISCOSITY SOLUTIONS FOR A CLASS OF FULLY NONLINEAR EQUATIONS [J].
DONG, GC ;
BIAN, BJ .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 1991, 34 (12) :1448-1457
[46]   Symmetry of viscosity solutions for fully nonlinear parabolic equations [J].
Dai, Limei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 29 :68-79
[47]   THE REGULARITY OF VISCOSITY SOLUTIONS FOR A CLASS OF FULLY NONLINEAR EQUATIONS [J].
董光昌 ;
边保军 .
Science China Mathematics, 1991, (12) :1448-1457
[48]   CLASSIFICATION OF POSITIVE SOLUTIONS FOR FULLY NONLINEAR ELLIPTIC EQUATIONS IN UNBOUNDED CYLINDERS [J].
Wang, Lidan ;
Wang, Lihe ;
Zhou, Chunqin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) :1241-1261
[49]   Entire solutions of fully nonlinear elliptic equations with a superlinear gradient term [J].
Galise, G. ;
Koike, S. ;
Ley, O. ;
Vitolo, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (01) :194-210
[50]   Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations [J].
Wu, Duan ;
Niu, Pengcheng .
MANUSCRIPTA MATHEMATICA, 2022, 169 (3-4) :549-563