Models of Agricultural Vulnerability to the effects of climate change

被引:0
作者
Hernandez Ramirez, Claudia [1 ]
Bonales Valencia, Joel [2 ]
Ortiz Paniagua, Carlos Francisco [2 ]
机构
[1] Univ Michoacana, Ciencias Desarrollo Reg, Inst Invest Econ & Empresariales, Morelia, Michoacan, Mexico
[2] Univ Michoacana, Inst Invest Econ & Empresariales, Morelia, Michoacan, Mexico
来源
CIMEXUS | 2014年 / 9卷 / 02期
关键词
Climate Change; Agricultural Vulnerability; Structural Model;
D O I
暂无
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
The Agricultural Vulnerability (VA) is the result of the measurement of climate variability within a social and sectorial vulnerability context, that has been adding concepts and indicators that enrich and complement the analysis of food security, on the understanding that the availability of prognostic, corresponds not only to the fundamental right of any human being, but to the survival of himself. The methodology for measurement of this variable strictly depends on the scope of research and the data availability of the region and selected agricultural product. The models used to date are three: the Structural Model, Space Model and Agricultural Vulnerability.
引用
收藏
页码:31 / 48
页数:18
相关论文
共 50 条
[41]   Mapping agricultural vulnerability of Tamil Nadu, India to climate change: a dynamic approach to take forward the vulnerability assessment methodology [J].
R. Jayakumara Varadan ;
Pramod Kumar .
Climatic Change, 2015, 129 :159-181
[42]   VULNERABILITY AND ADAPTATION OF CHINESE AGRICULTURE TO GLOBAL CLIMATE CHANGE [J].
蔡运龙 .
Chinese Geographical Science, 1997, (04) :289-301
[43]   Assessment of Farm Vulnerability to Climate Change in Southern France [J].
Zaatra, Abderraouf ;
Requier-Desjardins, Melanie ;
Rey-Valette, Helene ;
Blayac, Thierry ;
Belhouchette, Hatem .
LAND, 2025, 14 (07)
[44]   Vulnerability and adaptation of Chinese agriculture to global climate change [J].
Cai Yunlong .
Chinese Geographical Science, 1997, 7 (4) :289-301
[45]   Genetically-informed population models improve climate change vulnerability assessments [J].
Nathan W. Byer ;
Brendan N. Reid ;
M. Z. Peery .
Landscape Ecology, 2020, 35 :1215-1228
[46]   Genetically-informed population models improve climate change vulnerability assessments [J].
Byer, Nathan W. ;
Reid, Brendan N. ;
Peery, M. Z. .
LANDSCAPE ECOLOGY, 2020, 35 (05) :1215-1228
[47]   The Effects of Climate Change on the Reuse of Agricultural Drainage Water in Irrigation [J].
Agbortoko Bate Ashu ;
Sang-Il Lee .
KSCE Journal of Civil Engineering, 2021, 25 :1116-1129
[48]   Agricultural machinery research to reduce extreme effects of climate change [J].
Radics, J. ;
Fabian, C. ;
Farkas, Z. ;
Kerenyi, G. ;
Jori, I. J. .
ACTUAL TASKS ON AGRICULTURAL ENGINEERING, PROCEEDINGS, 2006, 34 :149-158
[49]   The Effects of Climate Change on the Reuse of Agricultural Drainage Water in Irrigation [J].
Ashu, Agbortoko Bate ;
Lee, Sang-Il .
KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (03) :1116-1129
[50]   Predicting the effects of climate change on natural enemies of agricultural pests [J].
Thomson, Linda J. ;
Macfadyen, Sarina ;
Hoffmann, Ary A. .
BIOLOGICAL CONTROL, 2010, 52 (03) :296-306