QUALITATIVE-ANALYSIS OF A NONAUTONOMOUS NONLINEAR DELAY DIFFERENTIAL-EQUATION

被引:15
作者
KUANG, Y [1 ]
ZHANG, BG [1 ]
ZHAO, T [1 ]
机构
[1] OCEAN UNIV QINGDAO,DEPT APPL MATH,QINGDAO 266003,PEOPLES R CHINA
关键词
DELAY DIFFERENTIAL EQUATION; PERIODIC SOLUTION; OSCILLATION; FIXED-POINT THEOREM; HOPF BIFURCATION;
D O I
10.2748/tmj/1178227425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the systematic study of some qualitative properties of solutions of a nonautonomous nonlinear delay equation, which can be utilized to model single population growths. Various results on the boundedness and oscillatory behavior of solutions are presented. A detailed analysis of the global existence of periodic solutions for the corresponding autonomous nonlinear delay equation is given. Moreover, sufficient conditions are obtained for the solutions to tend to the unique positive equilibrium.
引用
收藏
页码:509 / 528
页数:20
相关论文
共 17 条
  • [1] SOME PERIODICITY CRITERIA FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS
    ALT, W
    [J]. MANUSCRIPTA MATHEMATICA, 1978, 23 (03) : 295 - 318
  • [2] Cui Q., 1982, J THEOR BIOL, V98, P645
  • [3] CUI Q, 1984, BIOTECHNOL BIOENG, V24, P682
  • [4] CUI Q, 1987, P INT MATH BIOL C XI
  • [5] Cui Q, 1982, ACTA ECOL SIN, V2, P403
  • [6] Erbe L.H., 1988, DIFFERENTIAL INTEGRA, V1, P305
  • [7] Freedman H. I., 1991, FUNKC EKVACIOJ-SER I, V34, P187
  • [8] HALE J, 1977, THEORY FUNCTIONAL DI
  • [9] Jones G.S, 1962, J MATH ANAL APPL, V5, P435, DOI 10.1016/0022-247X(62)90017-3
  • [10] KAKUTANI S, 1958, CONTRIBUTIONS THEORY, V4