Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain

被引:11
|
作者
Liu, Wanzhao [1 ,2 ]
Chaurette, Joanna [1 ,2 ]
Pfister, Edith L. [1 ,2 ]
Kennington, Lori A. [1 ,2 ]
Chase, Kathryn O. [1 ,2 ]
Bullock, Jocelyn [3 ]
Vonsattel, Jean Paul G. [4 ]
Faull, Richard L. M. [3 ]
Macdonald, Douglas [5 ]
DiFiglia, Marian [6 ]
Zamore, Phillip D. [7 ]
Aronin, Neil [1 ,2 ]
机构
[1] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Dept Med, Worcester, MA 01605 USA
[3] Univ Auckland, Fac Med & Hlth Sci, Ctr Brain Res, Dept Anat & Radiol, Auckland, New Zealand
[4] Columbia Univ, New York Brain Bank, Alzheimer Dis Res Ctr Taub Inst, Neuropathol Core, New York, NY USA
[5] CHDI Fdn Inc, Los Angeles, CA USA
[6] Massachusetts Gen Hosp, MassGeneral Inst Neurodegenerat Dis, Charlestown, MA USA
[7] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Dept Biochem & Mol Pharmacol, Worcester, MA USA
关键词
Huntington's disease; mRNA; HTT mRNA alleles; Huntington's disease neuropathology grade;
D O I
10.3233/JHD-130079
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Huntington's disease is caused by expansion of CAG trinucleotide repeats in the first exon of the huntingtin gene, which is essential for both development and neurogenesis. Huntington's disease is autosomal dominant. The normal allele contains 6 to 35 CAG triplets (average, 18) and the mutant, disease-causing allele contains >36 CAG triplets (average, 42). Objective: We examined 279 postmortem brain samples, including 148 HD and 131 non-HD controls. A total of 108 samples from 87 HD patients that are heterozygous at SNP rs362307, with a normal allele (18 to 27 CAG repeats) and a mutant allele (39 to 73 CAG repeats) were used to measure relative abundance of mutant and wild-type huntingtin mRNA. Methods: We used allele-specific, quantitative RT-PCR based on SNP heterozygosity to estimate the relative amount of mutant versus normal huntingtin mRNA in postmortem brain samples from patients with Huntington's disease. Results: In the cortex and striatum, the amount of mRNA from the mutant allele exceeds that from the normal allele in 75% of patients. In the cerebellum, no significant difference between the two alleles was evident. Brain tissues from non-HD controls show no significant difference between two alleles of huntingtin mRNAs. Allelic differences were more pronounced at early neuropathological grades (grades 1 and 2) than at late grades (grades 3 and 4). Conclusion: More mutant HTT than normal could arise from increased transcription of mutant HTT allele, or decreased clearance of mutant HTT mRNA, or both. An implication is that equimolar silencing of both alleles would increase the mutant HTT to normal HTT ratio.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [21] Soluble mutant huntingtin drives early human pathogenesis in Huntington’s disease
    Andrés Miguez
    Cinta Gomis
    Cristina Vila
    Marta Monguió-Tortajada
    Sara Fernández-García
    Georgina Bombau
    Mireia Galofré
    María García-Bravo
    Phil Sanders
    Helena Fernández-Medina
    Blanca Poquet
    Cristina Salado-Manzano
    Santiago Roura
    Jordi Alberch
    José Carlos Segovia
    Nicholas D. Allen
    Francesc E. Borràs
    Josep M. Canals
    Cellular and Molecular Life Sciences, 2023, 80
  • [22] Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease
    Byrne, Lauren M.
    Rodrigues, Filipe B.
    Johnson, Eileanor B.
    Wijeratne, Peter A.
    De Vita, Enrico
    Alexander, Daniel C.
    Palermo, Giuseppe
    Czech, Christian
    Schobel, Scott
    Scahill, Rachael I.
    Heslegrave, Amanda
    Zetterberg, Henrik
    Wild, Edward J.
    SCIENCE TRANSLATIONAL MEDICINE, 2018, 10 (458)
  • [23] Disruption of immune cell function by mutant huntingtin in Huntington's disease pathogenesis
    Andre, Ralph
    Carty, Lucy
    Tabrizi, Sarah J.
    CURRENT OPINION IN PHARMACOLOGY, 2016, 26 : 33 - 38
  • [24] MUTANT HUNTINGTIN FRAGMENTATION IN IMMUNE CELLS TRACKS HUNTINGTON'S DISEASE PROGRESSION
    Andre, R.
    Weiss, A.
    Traeger, U.
    Grueninger, S.
    Farmer, R.
    Landles, C.
    Scahill, R.
    Lahiri, N.
    Haider, S.
    Macdonald, D.
    Frost, C.
    Bates, G.
    Bilbe, G.
    Kuhn, R.
    Wild, E.
    Tabrizi, S. J.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2012, 83 : A22 - A23
  • [25] Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage
    Kuhn, Alexandre
    Goldstein, Darlene R.
    Hodges, Angela
    Strand, Andrew D.
    Sengstag, Thierry
    Kooperberg, Charles
    Becanovic, Kristina
    Pouladi, Mahmoud A.
    Sathasivam, Kirupa
    Cha, Jang-Ho J.
    Hannan, Anthony J.
    Hayden, Michael R.
    Leavitt, Blair R.
    Dunnett, Stephen B.
    Ferrante, Robert J.
    Albin, Roger
    Shelbourne, Peggy
    Delorenzi, Mauro
    Augood, Sarah J.
    Faull, Richard L. M.
    Olson, James M.
    Bates, Gillian P.
    Jones, Lesley
    Luthi-Carter, Ruth
    HUMAN MOLECULAR GENETICS, 2007, 16 (15) : 1845 - 1861
  • [26] Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin - A potential mechanism for loss of huntingtin function in Huntington's disease
    Busch, A
    Engemann, S
    Lurz, R
    Okazawa, H
    Lehrach, H
    Wanker, EE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) : 41452 - 41461
  • [27] Wild type huntingtin reduces the cellular toxicity of mutant huntingtin in mammalian cell models of Huntington's disease
    Ho, LW
    Brown, R
    Maxwell, M
    Wyttenbach, A
    Rubinsztein, DC
    JOURNAL OF MEDICAL GENETICS, 2001, 38 (07) : 450 - 452
  • [28] Is brain lactate increased in Huntington's disease?
    Martin, W. R. Wayne
    Wieler, Marguerite
    Hanstock, Christopher C.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2007, 263 (1-2) : 70 - 74
  • [29] Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease
    Rodrigues, Filipe B.
    Byrne, Lauren M.
    Tortelli, Rosanna
    Johnson, Eileanoir B.
    Wijeratne, Peter A.
    Arridge, Marzena
    De Vita, Enrico
    Ghazaleh, Naghmeh
    Houghton, Richard
    Furby, Hannah
    Alexander, Daniel C.
    Tabrizi, Sarah J.
    Schobel, Scott
    Scahill, Rachael, I
    Heslegrave, Amanda
    Zetterberg, Henrik
    Wild, Edward J.
    SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (574)
  • [30] Oxidative stress in striatal cells expressing mutant huntingtin and in Huntington's disease cybrids
    Ribeiro, Marcio
    Nascimento, Maria V.
    Louros, Susana
    Ferreira, I. Luisa
    Almeida, Sandra
    Cardoso, Sandra M.
    Oliveira, Catarina R.
    Rego, A. Cristina
    FREE RADICAL RESEARCH, 2007, 41 : S50 - S50