ON THE GLOBAL CAUCHY-PROBLEM FOR SOME NON-LINEAR SCHRODINGER-EQUATIONS

被引:0
作者
GINIBRE, J
VELO, G
机构
[1] UNIV BOLOGNA, DEPARTIMENTO FIS, I-40126 BOLOGNA, ITALY
[2] IST NAZL FIS NUCL, BOLOGNA, ITALY
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1984年 / 1卷 / 04期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:309 / 323
页数:15
相关论文
共 19 条
[1]  
Adams R. A., 2003, SOBOLEV SPACES, V2
[2]  
BAILLON JB, 1977, CR ACAD SCI A MATH, V284, P869
[3]   EXISTENCE OF GLOBAL SMOOTH SOLUTIONS OF CERTAIN SEMI-LINEAR HYPERBOLIC EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1979, 167 (02) :99-135
[4]   GLOBAL CLASSICAL-SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS [J].
BRENNER, P ;
VONWAHL, W .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (01) :87-121
[6]  
Cazenave T., 1980, ANN FAC SCI TOULOUSE, P21, DOI DOI 10.5802/AFST.543
[7]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[8]  
GINIBRE J, 1978, ANN I H POINCARE A, V28, P287
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[10]  
GINIBRE J, UNPUB