Covariance-based recognition using an incremental learning approach

被引:0
|
作者
Osman, Hassab [1 ]
机构
[1] Tokyo Inst Technol, Imaging Sci & Engn Lab, Tokyo, Japan
关键词
Random forests (RFs); Object recognition; Histograms; Covariance descriptor;
D O I
10.1007/s10015-009-0660-7
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose an incremental machine-learning approach for object recognition where new images are continuously added and the recognition decision is made with no delay. First, the object region is automatically represented using a bag of covariance features. Then an on-line variant of the random forest (RF) classifier is employed to select object descriptors and to learn the object classifiers. A validation of the method by empirical studies in the domain of the GRAZ02 dataset shows its superior performance over those methods which are histogram-based, and subsequently yields in object recognition performance comparable to that of state-of-the-art classifiers.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [31] Conditional covariance-based subtest selection for DIMTEST
    Froelich, Amy G.
    Habing, Brian
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2008, 32 (02) : 138 - 155
  • [32] Covariance-Based DoA Estimation in a Krylov Subspace
    Tadeu N. Ferreira
    Marcello L. R. de Campos
    Sergio L. Netto
    Circuits, Systems, and Signal Processing, 2015, 34 : 2363 - 2379
  • [33] A GENERALIZATION OF THE SPARSE ITERATIVE COVARIANCE-BASED ESTIMATOR
    Sward, Johan
    Adalbjornsson, Stefan Ingi
    Jakobsson, Andreas
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3954 - 3958
  • [34] Conditional covariance-based nonparametric multidimensionality assessment
    Stout, W
    Habing, B
    Douglas, J
    Kim, HR
    Roussos, L
    Zhang, JM
    APPLIED PSYCHOLOGICAL MEASUREMENT, 1996, 20 (04) : 331 - 354
  • [35] COVARIANCE-BASED NETWORK TASKING OF OPTICAL SENSORS
    Hill, Keric
    Sydney, Paul
    Hamada, Kris
    Cortez, Randy
    Luu, Kim
    Jah, Moriba
    Schumacher, Paul W., Jr.
    Coulman, Michael
    Houchard, Jeff
    Naho'olewa, Dale
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 769 - +
  • [36] A Covariance-based Method for Dynamic Background Subtraction
    Zhang, Shengping
    Yao, Hongxun
    Liu, Shaohui
    Chen, Xilin
    Gao, Wen
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3141 - 3144
  • [37] Covariance-Based Variable Selection for Compositional Data
    Karel Hron
    Peter Filzmoser
    Sandra Donevska
    Eva Fišerová
    Mathematical Geosciences, 2013, 45 : 487 - 498
  • [38] Covariance-Based DoA Estimation in a Krylov Subspace
    Ferreira, Tadeu N.
    de Campos, Marcello L. R.
    Netto, Sergio L.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (07) : 2363 - 2379
  • [39] Covariance-based online validation of video tracking
    SanMiguel, J. C.
    Calvo, A.
    ELECTRONICS LETTERS, 2015, 51 (03) : 226 - U48
  • [40] LEARNING COVARIANCE-BASED MULTI-SCALE REPRESENTATION OF NEUROIMAGING MEASURES FOR ALZHEIMER CLASSIFICATION
    Baek, Seunghun
    Choi, Injun
    Dere, Mustafa
    Kim, Minjeong
    Wu, Guorong
    Kim, Won Hwa
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,