Covariance-based recognition using an incremental learning approach

被引:0
|
作者
Osman, Hassab [1 ]
机构
[1] Tokyo Inst Technol, Imaging Sci & Engn Lab, Tokyo, Japan
关键词
Random forests (RFs); Object recognition; Histograms; Covariance descriptor;
D O I
10.1007/s10015-009-0660-7
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose an incremental machine-learning approach for object recognition where new images are continuously added and the recognition decision is made with no delay. First, the object region is automatically represented using a bag of covariance features. Then an on-line variant of the random forest (RF) classifier is employed to select object descriptors and to learn the object classifiers. A validation of the method by empirical studies in the domain of the GRAZ02 dataset shows its superior performance over those methods which are histogram-based, and subsequently yields in object recognition performance comparable to that of state-of-the-art classifiers.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 50 条
  • [21] Generalized sparse covariance-based estimation
    Sward, Johan
    Adalbjornsson, Stefan I.
    Jakobsson, Andreas
    SIGNAL PROCESSING, 2018, 143 : 311 - 319
  • [22] On generalized covariance-based velocity estimation
    Anim-Appiah, KD
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1999, 48 (05) : 1546 - 1557
  • [23] Covariance-based analyses of biological pathways
    Danaher, P.
    Paul, D.
    Wang, P.
    BIOMETRIKA, 2015, 102 (03) : 533 - 544
  • [24] A Model with Evolutionary Covariance-based Learning for High-Frequency Financial Forecasting
    Araujo, Ricardo de A.
    Oliveira, Adriano L. I.
    Meira, Silvio
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1175 - 1182
  • [25] Recovering people tracking errors using enhanced covariance-based signatures
    Badie, J.
    Bak, S.
    Serban, S. T.
    Bremond, F.
    2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 487 - 493
  • [26] Rough Set-Based Incremental Learning Approach to Face Recognition
    Chen, Xuguang
    Ziarko, Wojciech
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2010, 6086 : 356 - 365
  • [27] Kalman Filtering With Adaptive Step Size Using a Covariance-Based Criterion
    Or, Barak
    Bobrovsky, Ben-Zion
    Klein, Itzik
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [28] Eddy covariance-based evapotranspiration for a subtropical wetland
    Wu, Chin-Lung
    Shukla, Sanjay
    HYDROLOGICAL PROCESSES, 2014, 28 (24) : 5879 - 5896
  • [29] COVARIANCE-BASED SCHEDULING OF A NETWORK OF OPTICAL SENSORS
    Hill, Keric
    Sydney, Paul
    Hamada, Kris
    Cortez, Randy
    Luu, K. Kim
    Schumacher, Paul W., Jr.
    Jah, Moriba
    KYLE T. ALFRIEND ASTRODYNAMICS SYMPOSIUM, 2011, 139 : 393 - +
  • [30] Covariance-Based Variable Selection for Compositional Data
    Hron, Karel
    Filzmoser, Peter
    Donevska, Sandra
    Fiserova, Eva
    MATHEMATICAL GEOSCIENCES, 2013, 45 (04) : 487 - 498