SPECTRAL ASYMPTOTICS OF NONSELFADJOINT ELLIPTIC-SYSTEMS OF DIFFERENTIAL-OPERATORS IN BOUNDED DOMAINS

被引:2
作者
BOIMATOV, KK [1 ]
KOSTYUCHENKO, AG [1 ]
机构
[1] MV LOMONOSOV STATE UNIV, MOSCOW 117234, USSR
来源
MATHEMATICS OF THE USSR-SBORNIK | 1992年 / 71卷 / 02期
关键词
D O I
10.1070/SM1992v071n02ABEH002135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a bounded domain OMEGA subset-of R(n) with smooth boundary, a matrix elliptic differential operator A is considered. It is assumed that the eigenvalues of the symbol of A lie on the positive semiaxis R+ and outside the angle-PHI = {z: \arg z\ less-than-or-equal-to phi}, phi is-an-element-of (0, pi). The principal term of the asymptotics of the function N(PHI)(t) describing the distribution of the eigenvalues of A in the angle-PHI is calculated. Under the condition that all the eigenvalues of the symbol lie outside PHI , upper bounds are obtained for N(PHI)(t) with reduced order of growth. The case of a selfadjoint operator A is considered separately.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 50 条
[21]   LP-THEORY OF ELLIPTIC DIFFERENTIAL-OPERATORS WITH BOUNDED COEFFICIENTS [J].
KORDYUKOV, YA .
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (04) :98-100
[22]   THE PARAMATRIX AND ASYMPTOTICS OF THE SPECTRAL-FUNCTION OF DIFFERENTIAL-OPERATORS IN RN [J].
VAINBERG, BR .
DOKLADY AKADEMII NAUK SSSR, 1985, 282 (02) :265-269
[23]   DUALITY AND DIFFERENTIAL-OPERATORS ON THE BERGMAN SPACES OF BOUNDED SYMMETRICAL DOMAINS [J].
YAN, ZM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 105 (01) :171-186
[24]   SPECTRAL ASYMPTOTICS FOR 2ND ORDER DIFFERENTIAL-OPERATORS [J].
POPOV, GS .
DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (04) :413-415
[25]   PARAMETRIX AND ASYMPTOTICS OF THE SPECTRAL-FUNCTION OF DIFFERENTIAL-OPERATORS IN RN [J].
VAINBERG, BR .
MATHEMATICS OF THE USSR-SBORNIK, 1986, 130 (1-2) :245-265
[26]   MULTIDIMENSIONAL SPECTRAL ASYMPTOTICS FOR ELLIPTIC-OPERATORS IN A BOUNDED DOMAIN [J].
KOZLOV, SM .
MATHEMATICS OF THE USSR-IZVESTIYA, 1984, 48 (01) :49-71
[27]   ON THE EIGENVALUES OF ELLIPTIC DIFFERENTIAL-OPERATORS IN LIMIT-CYLINDRICAL DOMAINS [J].
BOIMATOV, KK .
DOKLADY AKADEMII NAUK SSSR, 1989, 308 (01) :11-14
[28]   THE CONTINUOUS SPECTRA OF ELLIPTIC DIFFERENTIAL-OPERATORS IN UNBOUNDED-DOMAINS [J].
TAYOSHI, T .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1987, 27 (04) :731-781
[29]   LP-THEORY OF ELLIPTIC DIFFERENTIAL-OPERATORS ON MANIFOLDS OF BOUNDED GEOMETRY [J].
KORDYUKOV, YA .
ACTA APPLICANDAE MATHEMATICAE, 1991, 23 (03) :223-260