LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GENERALIZED GAMMA AND q- GAMMA FUNCTIONS

被引:0
作者
Krasniqi, Valmir [1 ]
Guo, Senlin [2 ]
机构
[1] Univ Prishtina, Dept Math, Prishtine 10000, Pristina, Kosovo
[2] Zhongyuan Univ Tech, Zhengzhou 450007, Henan, Peoples R China
关键词
Completely monotonic function; logarithmically completely monotonic function; Gamma function; Psi function; inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the function f(alpha,beta,p) (x) = Gamma(p()x vertical bar beta)/p(x)x(x)+beta-alpha(x+p)(x+p+beta-alpha) is logarithmically completely monotonic on (0, infinity) if 2 alpha <= 1 <= beta, and the function g(m,alpha) (x) = x(alpha) (vertical bar psi((m))(p) (x)vertical bar - ((m-1)!)(xm) vertical bar (m(m-1)!)((x vertical bar p))) is strictly completely monotonic on (0, infinity) fora <= 1.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 18 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCT FORMU
[2]  
Askey R., 1978, APPL ANAL, V8, P125, DOI [10.1080/00036817808839221, DOI 10.1080/00036817808839221]
[3]  
BOCHER S, 2005, HARMONIC ANAL THEORY
[4]  
Bullen P. S., 2003, MATH APPL, V560
[5]  
Chen Ch.-P., 2006, GEN MATH, V14, P127
[6]   Logarithmically completely monotonic functions relating to the gamma function [J].
Chen, Chao-Ping ;
Qi, Feng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) :405-411
[7]  
Ismail M. E. H., 1994, APPROXIMATION COMPUT, V119, P309, DOI DOI 10.1007/978-1-4684-7415-2_
[8]   On a q-analogue of the p-adic log gamma functions and related integrals [J].
Kim, T .
JOURNAL OF NUMBER THEORY, 1999, 76 (02) :320-329
[9]  
Kim T., 2000, ADV STUD CONT MATH, V2, P37
[10]  
KIM T, 2004, ADV STUD CONT MATH, V8, P111