ON THE EWALD SUMMATION TECHNIQUE FOR 2D LATTICES

被引:6
|
作者
SOLBRIG, H
机构
来源
关键词
D O I
10.1002/pssa.2210720120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [21] Ewald summation techniques in perspective: A survey
    Toukmaji, AY
    Board, JA
    COMPUTER PHYSICS COMMUNICATIONS, 1996, 95 (2-3) : 73 - 92
  • [22] Ewald summation for systems with slab geometry
    Yeh, IC
    Berkowitz, ML
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (07): : 3155 - 3162
  • [23] Presumed versus real artifacts of the Ewald summation technique: The importance of dielectric boundary conditions
    Boresch, S
    Steinhauser, O
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1997, 101 (07): : 1019 - 1029
  • [24] Homogenization of 1D and 2D magnetoelastic lattices
    Schaeffer, Marshall
    Ruzzene, Massimo
    EPJ APPLIED METAMATERIALS, 2016, 2
  • [25] Modified 3D Ewald Summation for Slab Geometry at Constant Potential
    Girotto, Matheus
    Alencar, Adriano Mesquita
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (36): : 7842 - 7848
  • [26] The Coincidence Site Lattices in 2D Hexagonal Lattices Using Clifford Algebra
    Rodriguez-Andrade, M. A.
    Aragon-Gonzalez, G.
    Aragon, J. L.
    Gomez-Rodriguez, A.
    Romeu, D.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (02) : 425 - 440
  • [27] The Coincidence Site Lattices in 2D Hexagonal Lattices Using Clifford Algebra
    M.A. Rodríguez-Andrade
    G. Aragón-González
    J.L. Aragón
    A. Gómez-Rodríguez
    D. Romeu
    Advances in Applied Clifford Algebras, 2015, 25 : 425 - 440
  • [28] ISING-MODEL ON 2D RANDOM LATTICES
    JANKE, W
    KATOOT, M
    VILLANOVA, R
    NUCLEAR PHYSICS B, 1994, : 698 - 701
  • [29] Dispersion of Flexural Modes in Soft 2D Lattices
    Ipatov, A. N.
    Parshin, D. A.
    Conyuh, D. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 134 (01) : 31 - 41
  • [30] Integral preserving discretization of 2D Toda lattices
    Smirnov, Sergey, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (26)