FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

被引:30
|
作者
Jumarie, Guy [1 ]
机构
[1] Univ Quebec, Dept Math, POB 8888 Downtown Stn, Montreal, PQ H3C 3P8, Canada
关键词
Mittag-Leffler function; fractional Taylor's series; fractional derivative; optimal control; Hamilton-Jacobi equation; dynamical programming; fractional partial differential equation;
D O I
10.1007/BF02831970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving nonlinear fractional partial differential equations. The key of this results is the fractional Taylor's series f(x + h) = E-alpha(h(alpha)D(alpha)) f(x) where E-alpha(.) is the Mittag-Leffler function.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [41] ON AN OPTIMAL CONTROL PROBLEM OF TIME-FRACTIONAL ADVECTION-DIFFUSION EQUATION
    Tang, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 761 - 779
  • [42] A new framework for solving fractional optimal control problems using fractional pseudospectral methods
    Tang, Xiaojun
    Shi, Yang
    Wang, Li-Lian
    AUTOMATICA, 2017, 78 : 333 - 340
  • [43] Optimal control of linear systems with fractional derivatives
    Ivan Matychyn
    Viktoriia Onyshchenko
    Fractional Calculus and Applied Analysis, 2018, 21 : 134 - 150
  • [44] FRACTIONAL OPTIMAL CONTROL APPROACH TO THE DIABETICS MODEL
    Nadeem, Muhammad
    Habib, Mustafa
    Arif, Ayesha
    Asjad, Muhammad Imran
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2024, 23 (01) : 71 - 82
  • [45] OPTIMAL CONTROL OF LINEAR SYSTEMS WITH FRACTIONAL DERIVATIVES
    Matychyn, Ivan
    Onyshchenko, Viktoriia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 134 - 150
  • [46] Fractional conservation laws in optimal control theory
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    NONLINEAR DYNAMICS, 2008, 53 (03) : 215 - 222
  • [47] Fractional conservation laws in optimal control theory
    Gastão S. F. Frederico
    Delfim F. M. Torres
    Nonlinear Dynamics, 2008, 53 : 215 - 222
  • [48] Optimal control of fractional stochastic systems with delay
    Sathiyaraj, T.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 594 - 610
  • [49] A GLOBAL OPTIMIZATION APPROACH TO FRACTIONAL OPTIMAL CONTROL
    Rentsen, Enkhbat
    Zhou, J.
    Teo, K. L.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (01) : 73 - 82
  • [50] Optimal control of a class of Caputo fractional systems
    Das, Sanjukta
    Tripathi, Vidushi
    JOURNAL OF ANALYSIS, 2025, 33 (01) : 387 - 408