FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

被引:30
|
作者
Jumarie, Guy [1 ]
机构
[1] Univ Quebec, Dept Math, POB 8888 Downtown Stn, Montreal, PQ H3C 3P8, Canada
关键词
Mittag-Leffler function; fractional Taylor's series; fractional derivative; optimal control; Hamilton-Jacobi equation; dynamical programming; fractional partial differential equation;
D O I
10.1007/BF02831970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving nonlinear fractional partial differential equations. The key of this results is the fractional Taylor's series f(x + h) = E-alpha(h(alpha)D(alpha)) f(x) where E-alpha(.) is the Mittag-Leffler function.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [21] BILINEARIZATION AND FRACTIONAL SOLITON DYNAMICS OF FRACTIONAL KADOMTSEV-PETVIASHVILI EQUATION
    Zhang, Sheng
    Wei, Yuanyuan
    Xu, Bo
    THERMAL SCIENCE, 2019, 23 (03): : 1425 - 1431
  • [22] Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation
    Dorville, Rene
    Mophou, Gisele M.
    Valmorin, Vincent S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1472 - 1481
  • [23] Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics
    Alexander Gersten
    Foundations of Physics, 2011, 41 : 88 - 98
  • [24] An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals
    Oulmelk, A.
    Afraites, L.
    Hadri, A.
    Nachaoui, M.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 647 - 664
  • [25] Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics
    Gersten, Alexander
    FOUNDATIONS OF PHYSICS, 2011, 41 (01) : 88 - 98
  • [26] Discrete-Time Fractional Optimal Control
    Chiranjeevi, Tirumalasetty
    Biswas, Raj Kumar
    MATHEMATICS, 2017, 5 (02)
  • [27] Integral fractional pseudospectral methods for solving fractional optimal control problems
    Tang, Xiaojun
    Liu, Zhenbao
    Wang, Xin
    AUTOMATICA, 2015, 62 : 304 - 311
  • [28] Discrete approximation of the Hamilton Jacobi equation for the value function in an optimal control problem with infinite horizon
    Bagno, Aleksandr Leonidovich
    Taras'ev, Aleksandr Mlkhailovich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (01): : 27 - 39
  • [29] Analysis of the Hamilton-Jacobi equation in nonlinear control theory by symplectic geometry
    Sakamoto, N
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) : 1924 - 1937
  • [30] THE HAMILTON JACOBI EQUATION FOR OPTIMAL CONTROL PROBLEMS WITH DISCONTINUOUS TIME DEPENDENCE
    Bettiol, Piernicola
    Vinter, Richard B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (02) : 1199 - 1225