FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

被引:30
|
作者
Jumarie, Guy [1 ]
机构
[1] Univ Quebec, Dept Math, POB 8888 Downtown Stn, Montreal, PQ H3C 3P8, Canada
关键词
Mittag-Leffler function; fractional Taylor's series; fractional derivative; optimal control; Hamilton-Jacobi equation; dynamical programming; fractional partial differential equation;
D O I
10.1007/BF02831970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving nonlinear fractional partial differential equations. The key of this results is the fractional Taylor's series f(x + h) = E-alpha(h(alpha)D(alpha)) f(x) where E-alpha(.) is the Mittag-Leffler function.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [1] Subcritical Hamilton-Jacobi fractional equation in RN
    Dlotko, Tomasz
    Kania, Maria B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (12) : 2547 - 2560
  • [2] Hamilton-Jacobi fractional mechanics
    Rabei, Eqab M.
    Ababneh, Bashar S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 799 - 805
  • [3] On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion
    Silvestre, Luis
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 2020 - 2039
  • [4] Existence of mild solutions for a Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces
    Iwabuchi, Tsukasa
    Kawakami, Tatsuki
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (04): : 464 - 489
  • [5] Fractional Order Version of the Hamilton-Jacobi-Bellman Equation
    Razminia, Abolhassan
    Asadizadehshiraz, Mehdi
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (01):
  • [6] GEOMETRY OF THE DISCRETE HAMILTON-JACOBI EQUATION: APPLICATIONS IN OPTIMAL CONTROL
    de Leon, Manuel
    Sardon, Cristina
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 81 (01) : 39 - 63
  • [7] Optimal control of fractional diffusion equation
    Mophou, Gisele. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (01) : 68 - 78
  • [9] Bilinear optimal control for a fractional diffusive equation
    Mophou, Gisele
    Kenne, Cyrille
    Warma, Mahamadi
    OPTIMIZATION, 2024,
  • [10] A solution to Hamilton-Jacobi equation by neural networks and optimal state feedback control
    Shimizu, K
    Optimization And Control With Applications, 2005, 96 : 461 - 480