FANO MANIFOLDS, CONTACT STRUCTURES, AND QUATERNIONIC GEOMETRY

被引:109
作者
LEBRUN, C
机构
关键词
D O I
10.1142/S0129167X95000146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-l holomorphic sub-bundle D subset of TZ which is maximally non-integrable. If Z admits a Kahler-Einstein metric of positive scalar curvature, we show that it is the Salamon twister space of a quaternion-Kahler manifold (M(4n), g). If Z also admits a second complex contact structure ($) over tilde D not equal D, then Z = CP2n+1. As an application, we give several new characterizations of the Riemannian manifold HPn = Sp(n+1)/(Sp(n) x Sp(1)).
引用
收藏
页码:419 / 437
页数:19
相关论文
共 30 条
[1]  
Arnold V. I., 1980, MATH METHODS CLASSIC, V2nd
[2]  
Atiyah M.F., 1957, T AM MATH SOC, V85, P181, DOI 10.1090/S0002-9947-1957-0086359-5
[3]  
BANDO S, 1985, ALGEBRAIC GEOMETRY
[4]  
BENNEQUIN D, 1982, ASTERISQUE, V107, P87
[5]  
BERARDBERGERY L, 1979, VARIETES QUATERNIONI
[6]  
BERGER M, 1955, B SOC MATH FRANCE, V83, P278
[7]  
Besse A, 1986, EINSTEIN MANIFOLDS
[8]  
BOOTHBY WM, 1959, P S P MATH, V3, P144
[9]  
BOYER CP, 1993, GEOMETRY TOPOLOGY 3
[10]  
Calabi E, 1979, ANN SCI ECOLE NORM S, V12, P268