IMAGE ROTATION, WIGNER ROTATION, AND THE FRACTIONAL FOURIER-TRANSFORM

被引:935
作者
LOHMANN, AW
机构
[1] Angewandte Optik, Universität Erlangen-Nürnberg, Erlangen, 8520
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1993年 / 10卷 / 10期
关键词
D O I
10.1364/JOSAA.10.002181
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study the degree p = 1 is assigned to the ordinary Fourier transform. The fractional Fourier transform, for example with degree P = 1/2, performs an ordinary Fourier transform if applied twice in a row. Ozaktas and Mendlovic [''Fourier transforms of fractional order and their optical implementation,'' Opt. Commun. (to be published)] introduced the fractional Fourier transform into optics on the basis of the fact that a piece of graded-index (GRIN) fiber of proper length will perform a Fourier transform. Cutting that piece of GRIN fiber into shorter pieces corresponds to splitting the ordinary Fourier transform into fractional transforms. I approach the subject of fractional Fourier transforms in two other ways. First, I point out the algorithmic isomorphism among image rotation, rotation of the Wigner distribution function, and fractional Fourier transforming. Second, I propose two optical setups that are able to perform a fractional Fourier transform.
引用
收藏
页码:2181 / 2186
页数:6
相关论文
共 11 条
[1]   WIGNER DISTRIBUTION FUNCTION AND ITS OPTICAL PRODUCTION [J].
BARTELT, HO ;
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1980, 32 (01) :32-38
[2]  
BASTIAANS MJ, 1979, J OPT SOC AM, V69, P1710, DOI 10.1364/JOSA.69.001710
[3]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[4]   WIGNER DISTRIBUTION FUNCTION DISPLAY OF COMPLEX 1D SIGNALS [J].
BRENNER, KH ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1982, 42 (05) :310-314
[5]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[6]   MAP TRANSFORMATIONS BY OPTICAL ANAMORPHIC PROCESSING [J].
LOHMANN, AW ;
STREIBL, N .
APPLIED OPTICS, 1983, 22 (06) :780-783
[7]   AN OPTICAL SELF-TRANSFORM WITH ODD CYCLES [J].
LOHMANN, AW ;
MENDLOVIC, D .
OPTICS COMMUNICATIONS, 1992, 93 (1-2) :25-26
[8]   SELF-FOURIER OBJECTS AND OTHER SELF-TRANSFORM OBJECTS [J].
LOHMANN, AW ;
MENDLOVIC, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (11) :2009-2012
[9]   ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS [J].
MCBRIDE, AC ;
KERR, FH .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) :159-175
[10]  
NAMIAS V, 1980, J I MATH APPL, V25, P241