THE ESTIMATED FREQUENCY OF ZERO FOR A MIXED POISSON-DISTRIBUTION

被引:2
|
作者
HARRIS, IR [1 ]
机构
[1] UNIV TEXAS,DEPT MATH,AUSTIN,TX 78712
基金
美国国家科学基金会;
关键词
NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATOR; MIXED POISSON DISTRIBUTION; BIAS;
D O I
10.1016/0167-7152(91)90024-L
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimated frequencies of a mixed Poisson distribution are investigated. The frequencies are calculated using non-parametric maximum likelihood estimation. It is shown that the estimated frequency of zero is always greater than the observed frequency, and thus is biased.
引用
收藏
页码:371 / 372
页数:2
相关论文
共 36 条
  • [1] ESTIMATION OF GENERALIZED POISSON-DISTRIBUTION
    FAMOYE, F
    LEE, CMS
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1992, 21 (01) : 173 - 188
  • [2] On zero-inflated mixed Poisson transmuted exponential distribution: Properties and applications to observation with excess zeros
    Adetunji, Ademola Abiodun
    Sabri, Shamsul Rijal Muhammed
    MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 17 (01) : 68 - 80
  • [3] Poisson approximation of the mixed Poisson distribution with infinitely divisible mixing law
    Vaggelatou, Eutichia
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (01) : 128 - 138
  • [4] A note on the mixed Poisson formulation of the Poisson-inverse Gaussian distribution
    Ong, SH
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1998, 27 (01) : 67 - 78
  • [5] Zero-truncated Poisson-Lindley distribution and its application
    Ghitany, M. E.
    Al-Mutairi, D. K.
    Nadarajah, S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 279 - 287
  • [6] A new approach to forecasting intermittent demand based on the mixed zero-truncated Poisson model
    Jiang, Aiping
    Tam, Kwok Leung
    Guo, Xiaoyun
    Zhang, Yufeng
    JOURNAL OF FORECASTING, 2020, 39 (01) : 69 - 83
  • [7] Improvements in the Poisson approximation of mixed Poisson distributions
    Roos, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 113 (02) : 467 - 483
  • [8] On moment sequences and mixed Poisson distributions
    Kuba, Markus
    Panholzer, Alois
    PROBABILITY SURVEYS, 2016, 13 : 89 - 155
  • [9] Mixed Poisson Traffic Rate Network Tomography
    Ephraim, Yariv
    Coblenz, Joshua
    Mark, Brian L.
    Lev-Ari, Hanoch
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [10] Convergence and inference for mixed Poisson random sums
    Oliveira, Gabriela
    Barreto-Souza, Wagner
    Silva, Roger W. C.
    METRIKA, 2021, 84 (05) : 751 - 777