LENGTH FUNCTIONS ON INTEGRAL-DOMAINS

被引:22
作者
ANDERSON, DF [1 ]
PRUIS, P [1 ]
机构
[1] CALVIN COLL,DEPT MATH,GRAND RAPIDS,MI 49506
关键词
D O I
10.2307/2048767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an integral domain and x is-an-element-of R which is a product of irreducible elements. Let l(x) and L(x) denote respectively the inf and sup of the lengths of factorizations of x into a product of irreducible elements. We show that the two limits, l(x)BAR and L(x)BAR, of l(x(n))/n and L(x(n))/n, respectively, as n goes to infinity always exist. Moreover, for any 0 less-than-or-equal-to alpha less-than-or-equal-to 1 less-than-or-equal-to beta less-than-or-equal-to infinity, there is an integral domain R and an irreducible x is-an-element-of R such that l(x)BAR = alpha and L(x)BAR = beta.
引用
收藏
页码:933 / 937
页数:5
相关论文
共 5 条
[1]  
ANDERSON DD, IN PRESS J PURE APPL
[2]   ATOMIC RINGS AND ASCENDING CHAIN CONDITION FOR PRINCIPAL IDEALS [J].
GRAMS, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 75 (MAY) :321-329
[3]  
Rees D., 1988, LONDON MATH SOC LECT, V113
[4]   HALF-FACTORIAL-DOMAINS [J].
ZAKS, A .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (04) :281-302
[5]   ATOMIC RINGS WITHOUT ACC ON PRINCIPAL IDEALS [J].
ZAKS, A .
JOURNAL OF ALGEBRA, 1982, 74 (01) :223-231