On perfect numbers which are ratios of two Fibonacci numbers

被引:0
作者
Luca, Florian [1 ]
Mejia Huguet, V. Janitzio [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Univ Autonoma Metropolitana, Mexico City 02200, DF, Mexico
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2010年 / 37卷
关键词
Perfect numbers; Fibonacci numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we prove that there is no perfect number of the form F-mn/F-m, where F-k is the kth Fibonacci number.
引用
收藏
页码:107 / 124
页数:18
相关论文
共 11 条
[1]  
Broughan K. A., INTEGERS
[2]   On the numerical factors of the arithmetic forms alpha(n +/-) beta (n) . [J].
Carmichael, RD .
ANNALS OF MATHEMATICS, 1913, 15 :30-48
[3]   Bounds for the maximal height of divisors of xn-1 [J].
Kaplan, Nathan .
JOURNAL OF NUMBER THEORY, 2009, 129 (11) :2673-2688
[4]   On the cyclotomic polynomial Phi(pq)(X) [J].
Lam, TY ;
Leung, KH .
AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (07) :562-564
[5]  
Lenstra Jr H.W., 1979, MATH CTR TRACTS, V101, P249
[6]  
LUCA F, 2000, REND CIRC MAT PALERM, V49, P313
[7]   A search for Fibonacci-Wieferich and Wolstenholme primes [J].
McIntosh, Richard J. ;
Roettger, Eric L. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :2087-2094
[8]  
Phong B., 1999, ACTA ACAD PAED AGRIE, V26, P3
[9]  
RIBENBOIM P, 1989, PORT MATH, V46, P159
[10]  
Rosser J. B., 1962, ILLINOIS J MATH, V6, P64