Deep sequencing of the microRNA expression in fall dormant and non-dormant alfalfa

被引:1
作者
Fan, Wenna [1 ]
Shi, Pengfei [1 ]
Wang, Chengzhang [1 ]
机构
[1] Henan Agr Univ, Coll Anim Sci & Vet Med, 95 Wenhua Rd, Zhengzhou, Henan 450002, Peoples R China
来源
GENOMICS DATA | 2014年 / 2卷
基金
中国国家自然科学基金;
关键词
Deep sequencing; MicroRNA; Fall dormancy; Alfalfa;
D O I
10.1016/j.gdata.2014.09.007
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation that down-regulates target genes bymRNA degradation or translational repression. Evidence is increasing for their crucial roles during plant development. Identification of miRNAs at the global genome-level by high-throughput sequencing is essential to functionally characterize miRNAs in plants. Alfalfa (Medicago sativa L.) is one of themostwidely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. However, little is known about miRNA-mediated developmental regulation of fall dormancy in alfalfa. Here, we provide detailed experimental methods and analysis pipeline in our study to identify miRNAs that were responsive to fall dormancy (FanWet al., Genome-wide identification of different dormant Medicago sativa L. microRNAs in response to fall dormancy, submitted for publication) for reproducible research. The data generated in our work provide meaningful information for understanding the roles of miRNAs in response to seasonal change and growth regulation in alfalfa. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:305 / 307
页数:3
相关论文
共 11 条
  • [1] miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
    Friedlaender, Marc R.
    Mackowiak, Sebastian D.
    Li, Na
    Chen, Wei
    Rajewsky, Nikolaus
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (01) : 37 - 52
  • [2] KEGG: Kyoto Encyclopedia of Genes and Genomes
    Kanehisa, M
    Goto, S
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 27 - 30
  • [3] KEGG for linking genomes to life and the environment
    Kanehisa, Minoru
    Araki, Michihiro
    Goto, Susumu
    Hattori, Masahiro
    Hirakawa, Mika
    Itoh, Masumi
    Katayama, Toshiaki
    Kawashima, Shuichi
    Okuda, Shujiro
    Tokimatsu, Toshiaki
    Yamanishi, Yoshihiro
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D480 - D484
  • [4] Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    Langmead, Ben
    Trapnell, Cole
    Pop, Mihai
    Salzberg, Steven L.
    [J]. GENOME BIOLOGY, 2009, 10 (03):
  • [5] Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary
    Mao, XZ
    Cai, T
    Olyarchuk, JG
    Wei, LP
    [J]. BIOINFORMATICS, 2005, 21 (19) : 3787 - 3793
  • [6] A toolkit for analysing large-scale plant small RNA datasets
    Moxon, Simon
    Schwach, Frank
    Dalmay, Tamas
    MacLean, Dan
    Studholme, David J.
    Moulton, Vincent
    [J]. BIOINFORMATICS, 2008, 24 (19) : 2252 - 2253
  • [7] The positive false discovery rate:: A Bayesian interpretation and the q-value
    Storey, JD
    [J]. ANNALS OF STATISTICS, 2003, 31 (06) : 2013 - 2035
  • [8] miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments
    Wen, Ming
    Shen, Yang
    Shi, Suhua
    Tang, Tian
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [9] PsRobot: a web-based plant small RNA meta-analysis toolbox
    Wu, Hua-Jun
    Ma, Ying-Ke
    Chen, Tong
    Wang, Meng
    Wang, Xiu-Jie
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W22 - W28
  • [10] Gene ontology analysis for RNA-seq: accounting for selection bias
    Young, Matthew D.
    Wakefield, Matthew J.
    Smyth, Gordon K.
    Oshlack, Alicia
    [J]. GENOME BIOLOGY, 2010, 11 (02):