Quasi-periodic solutions of the coupled nonlinear Schrodinger equations

被引:49
作者
Christiansen, PL
Eilbeck, JC
Enolskii, VZ
Kostov, NA
机构
[1] HERIOT WATT UNIV, DEPT MATH, EDINBURGH EH14 4AS, MIDLOTHIAN, SCOTLAND
[2] KIEV MET PHYS INST, DEPT THEORET PHYS, KIEV 252142, UKRAINE
[3] BULGARIAN ACAD SCI, INST ELECTR, BU-1784 SOFIA, BULGARIA
来源
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1995年 / 451卷 / 1943期
关键词
D O I
10.1098/rspa.1995.0149
中图分类号
学科分类号
摘要
We consider travelling periodic and quasi-periodic wave solutions of a set of coupled nonlinear Schrodinger equations. In fibre optics these equations can be used to model single mode fibres under the action of cross-phase modulation, with weak birefringence. The problem is reduced to the '1:2:1' integrable case of the two-particle quartic potential. A general approach for finding elliptic solutions is given. New solutions which are associated with two-gap Treibich-Verdier potentials are found. General quasi-periodic solutions are given in terms of two dimensional theta functions with explicit expressions for frequencies in terms of theta constants. The reduction of quasi-periodic solutions to elliptic functions is discussed.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 35 条
[1]  
AKER S, 1995, PHYS LETT A, V201, P167
[2]  
Bateman H., 1955, HIGHER TRANSCENDENTA, VII
[3]  
BELOKOLOS E, 1994, ALGEBRAIC GEOMETRICA
[4]  
BELOKOLOS ED, 1989, RUSS MATH SURV, V44, P155
[5]   POLARIZATION INSTABILITIES FOR SOLITONS IN BIREFRINGENT FIBERS [J].
BLOW, KJ ;
DORAN, NJ ;
WOOD, D .
OPTICS LETTERS, 1987, 12 (03) :202-204
[6]  
BOLZA O, 1987, MATH ANN, V28, P47
[7]   BLACK AND WHITE VECTOR SOLITONS IN WEAKLY BIREFRINGENT OPTICAL FIBERS [J].
CHRISTODOULIDES, DN .
PHYSICS LETTERS A, 1988, 132 (8-9) :451-452
[8]   STABILITY OF SOLITARY WAVES IN A NONLINEAR BIREFRINGENT OPTICAL FIBER [J].
DOWLING, RJ .
PHYSICAL REVIEW A, 1990, 42 (09) :5553-5560
[9]   ELLIPTIC BAKER-AKHIEZER FUNCTIONS AND AN APPLICATION TO AN INTEGRABLE DYNAMICAL SYSTEM [J].
EILBECK, JC ;
ENOLSKII, VZ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) :1192-1201
[10]   LINEAR R-MATRIX ALGEBRA FOR CLASSICAL SEPARABLE SYSTEMS [J].
EILBECK, JC ;
ENOLSKII, VZ ;
KUZNETSOV, VB ;
TSIGANOV, AV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02) :567-578