STRONGLY DEFINITIZABLE LINEAR PENCILS IN HILBERT-SPACE

被引:25
作者
LANCASTER, P
SHKALIKOV, A
YE, Q
机构
[1] UNIV CALGARY, DEPT MATH & STAT, CALGARY T2N 1N4, ALBERTA, CANADA
[2] MOSCOW MV LOMONOSOV STATE UNIV, DEPT MATH, MOSCOW, RUSSIA
[3] UNIV MANITOBA, DEPT APPL MATH, WINNIPEG R3T 2N2, MANITOBA, CANADA
关键词
AMS Subject Classification: 47A70; 47E05;
D O I
10.1007/BF01200290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Selfadjoint linear pencils lambdaF - G are considered which have discrete spectrum and neither F nor G is definite. Several characterizations are given of a ''strongly definitizable'' property when F and G are bounded, and also when both operators are unbounded. The theory is applied to analysis of the stability of a linear second order initial-boundary value problem with boundary conditions dependent on the eigenvalue parameter.
引用
收藏
页码:338 / 360
页数:23
相关论文
共 18 条
[1]  
Azizov T. Y., 1989, LINEAR OPERATORS SPA
[2]   ON ROOT VECTORS OF SELF-ADJOINT PENCILS [J].
BINDING, PA ;
SEDDIGHI, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 70 (01) :117-125
[3]  
Bognar J, 1974, INDEFINITE INNER PRO
[4]  
Bolotin V.V., 1963, NONCONSERVATIVE PROB
[5]  
Collatz L, 1963, EIGENWERTAUFGABEN TE
[6]  
Gohberg I., 1980, BASIC OPERATOR THEOR
[7]  
Gohberg I., 1969, INTRO THEORY LINEAR
[8]  
Kato T., 1976, PERTURBATION THEORY, V2nd ed.
[9]  
KOSTYUCHENKO AG, 1983, B MOSCOW STATE U, V38, P44
[10]  
KRASNOSELSKII MA, 1976, NOORDHOFF INT PUBL