SYMMETRY DECOMPOSITION OF CHAOTIC DYNAMICS

被引:88
作者
CVITANOVIC, P
ECKHARDT, B
机构
[1] UNIV MARBURG,FACHBEREICH PHYS,W-3550 MARBURG,GERMANY
[2] NIELS BOHR INST,DK-2100 COPENHAGEN 0,DENMARK
关键词
D O I
10.1088/0951-7715/6/2/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labour and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the N-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.
引用
收藏
页码:277 / 311
页数:35
相关论文
共 74 条
[41]   SPECTRAL PROPERTIES OF STRONGLY PERTURBED COULOMB-SYSTEMS - FLUCTUATION PROPERTIES [J].
HONIG, A ;
WINTGEN, D .
PHYSICAL REVIEW A, 1989, 39 (11) :5642-5657
[42]   CLASSICAL CHAOTIC SCATTERING - PERIODIC-ORBITS, SYMMETRIES, MULTIFRACTAL INVARIANT-SETS [J].
JUNG, C ;
RICHTER, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13) :2847-2866
[43]   CANTOR SET STRUCTURES IN THE SINGULARITIES OF CLASSICAL POTENTIAL SCATTERING [J].
JUNG, C ;
SCHOLZ, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3607-3617
[44]  
KADANOFF LP, 1984, P NATL ACAD SCI USA, V81, P1276, DOI 10.1073/pnas.81.4.1276
[45]   DISCRETE SYMMETRIES AND THE PERIODIC-ORBIT EXPANSIONS [J].
LAURITZEN, B .
PHYSICAL REVIEW A, 1991, 43 (01) :603-606
[46]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[47]  
2
[48]   THERMODYNAMIC-ZETA FUNCTIONS FOR ISING-MODELS WITH LONG-RANGE INTERACTIONS [J].
MAINIERI, R .
PHYSICAL REVIEW A, 1992, 45 (06) :3580-3591
[49]   CLASSICAL, SEMICLASSICAL, AND QUANTUM-MECHANICS OF A GLOBALLY CHAOTIC SYSTEM - INTEGRABILITY IN THE ADIABATIC APPROXIMATION [J].
MARTENS, CC ;
WATERLAND, RL ;
REINHARDT, WP .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (04) :2328-2337