Global Strong Solution to the 3D Incompressible Navierv-Stokes Equations with General Initial Data

被引:0
作者
Zheng, Tingting [1 ]
Zhang, Peixin [2 ]
机构
[1] Fujian Agr & Forest Univ, Comp & Message Sci Coll, Fuzhou 350002, Fujian, Peoples R China
[2] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2015年 / 48卷 / 03期
关键词
Incompressible Navier-Stokes equations; strong solutions; vacuum;
D O I
10.4208/jms.v48n3.15.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of global strong solution to an initial-boundary value (or initial value) problem for the 3D nonhomogeneous incompressible Navier-Stokes equations. In this study, the initial density is suitably small (or the viscosity coefficient suitably large) and the initial vacuumis allowed. Results show that the unique solution of the Navier- Stokes equations can be found.
引用
收藏
页码:250 / 255
页数:6
相关论文
共 13 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]  
Antontesv S. A., 1990, BOUNDARY VALUE PROBL
[3]   Unique solvability for the density-dependent Navier-Stokes equations [J].
Cho, YG ;
Kim, HS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (04) :465-489
[4]   Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids [J].
Choe, HJ ;
Kim, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1183-1201
[5]   Global Wellposedness for the 3D Inhomogeneous Incompressible Navier-Stokes Equations [J].
Craig, Walter ;
Huang, Xiangdi ;
Wang, Yun .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (04) :747-758
[6]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[7]  
DIPERNA RJ, 1989, SEM EDP EC POL PAL 1, P1988
[8]   Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable [J].
Gui, Guilong ;
Huang, Jingchi ;
Zhang, Ping .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (11) :3181-3210
[9]  
KAZHIKHO.AV, 1974, DOKL AKAD NAUK SSSR+, V216, P1008
[10]   A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations [J].
Kim, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1417-1434