BERNSTEIN TYPE THEOREMS FOR COMPACT-SETS IN R(N) REVISITED

被引:29
作者
BARAN, M
机构
[1] Department of Mathematics, University of Mining and Metallurgy, 30-059 Kraków
关键词
D O I
10.1006/jath.1994.1124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we complete some results of (J. Approx. Theory 69 (1992), 156-166) and give a geometrical approach to the multivariate Bernstein and Markov inequalities. The most interesting and slightly surprising result is a sharp Markov inequality for convex symmetric subsets of R(n) formulated in geometrical language. A sharp inequality for gradients of polynomials extends an old Kellog result (Math. Z. 27 (1927), 55-64), and it is also a partial positive answer to a question formulated by Wilhelmsen (J. Approx. Theory 11 (1974), 216-220) in 1974. (C) 1994 Academic Press, Inc.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1988, ANN POLON MATH
[2]   BERNSTEIN TYPE THEOREMS FOR COMPACT-SETS IN R(N) [J].
BARAN, M .
JOURNAL OF APPROXIMATION THEORY, 1992, 69 (02) :156-166
[3]  
BARAN M, 1992, MICH MATH J, V32, P395
[4]  
BARAN M, IN PRESS P AM MATH S
[5]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[6]  
Cheney E.W., 1982, INTRO APPROXIMATION, V2nd ed.
[7]  
DRUZKOWSKI LM, 1974, ZESZYTY NAUK UNIW JA, V16, P47
[8]  
JONSSON A, MARKOVS BERNSTEINS I
[9]  
KELLOGG OD, 1927, MATH Z, V27, P55
[10]  
Klimek M., 1991, PLURIPOTENTIAL THEOR