EXPONENTIAL DECAY OF GREEN-FUNCTIONS FOR A CLASS OF LONG-RANGE HAMILTONIANS

被引:3
作者
WANG, WM
机构
[1] Department of Physics, Princeton University, Princeton, 08544, NJ
关键词
D O I
10.1007/BF02096789
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of long range Hamiltonians with diagonal disorder on l2 (Z). For any ergodic potential V with non-empty essential range, we prove the exponential decay of the Green's functions for energies in the essential range. If V is independent identically distributed, we obtain the exponential decay of the Green's functions for all coupling constant lambda > 0. Moreover the Hamiltonian has only pure point spectrum.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]   ANDERSON LOCALIZATION FOR ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS [J].
DELYON, F ;
LEVY, Y ;
SOUILLARD, B .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) :375-388
[3]   ANDERSON LOCALIZATION FOR MULTI-DIMENSIONAL SYSTEMS AT LARGE DISORDER OR LARGE ENERGY [J].
DELYON, F ;
LEVY, Y ;
SOUILLARD, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (04) :463-470
[4]   ONE-DIMENSIONAL WAVE-EQUATIONS IN DISORDERED MEDIA [J].
DELYON, F ;
KUNZ, H ;
SOUILLARD, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (01) :25-42
[5]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[6]   THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS [J].
JOHNSON, R ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :403-438
[7]  
Katznelson Y., 1976, INTRO HARMONIC ANAL
[8]  
Kotani S., 1982, P TANIGUCHI S SA KAT, P225
[9]  
Kotani S., 1989, REV MATH PHYS, V1, P129
[10]  
RUELLE D., 1979, ERGODIC THEORY DIFFE, V50, P275