EULER-POINCARE CHARACTERISTIC AND POLYNOMIAL REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS

被引:17
作者
DUCHAMP, G
KROB, D
LASCOUX, A
LECLERC, B
SCHARF, T
THIBON, JY
机构
[1] UNIV ROUEN,LIR,F-76134 MONT ST AIGNAN,FRANCE
[2] UNIV PARIS 07,LITP,F-75251 PARIS 05,FRANCE
[3] UNIV MARNE VALLEE,INST GASPARD MONGE,F-93166 NOISY LE GRAND,FRANCE
[4] UNIV BAYREUTH,LEHRSTUHL MATH 2,W-8580 BAYREUTH,GERMANY
关键词
D O I
10.2977/prims/1195164438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hecke algebras of type A(n) admit faithful representations by symmetrization operators acting on polynomial rings. These operators are related to the geometry of flag manifolds and in particular to a generalized Euler-Poincare characteristic defined by Hirzebruch. They provide q-idempotents, togetherwith a simple way to describe the irreducible representations of the Hecke algebra. The link with Kazhdan-Lusztig representations is discussed. We specially detail the case of hook representations, and as an application, we investigate the hamiltonian of a quantum spin chain with U-q(su(1/1)) symmetry.
引用
收藏
页码:179 / 201
页数:23
相关论文
共 28 条
[1]  
AITKEN AC, 1936, P EDINBURGH MATH SOC, V5, P1
[2]  
Bernstein I.N., 1973, RUSS MATH SURV, V28, P1, DOI 10.1070/RM1973v028n03ABEH001557
[3]  
Carr~e C., 1992, INT J ALG COMP, V2, P275
[4]  
Cherednik I. V., 1986, GROUP THEORETICAL ME, P161
[5]   GRADED SOLUTIONS OF THE YANG-BAXTER RELATION AND LINK POLYNOMIALS [J].
DEGUCHI, T ;
AKUTSU, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11) :1861-1875
[6]  
DIPPER R, 1987, P LOND MATH SOC, V54, P57
[7]  
FOMIN S, 1992, YANG BAXTER EQUATION
[8]  
GROTHENDIECK A, SEMINARIRE GEOMETRIE, V6
[9]  
GYOJA A, 1986, OSAKA J MATH, V23, P841
[10]  
Hamermesh M., 1962, GROUP THEORY ITS APP