SPECTRAL THEORY OF 2-POINT DIFFERENTIAL-OPERATORS DETERMINED BY -D2 .1. SPECTRAL PROPERTIES

被引:23
作者
LANG, P [1 ]
LOCKER, J [1 ]
机构
[1] COLORADO STATE UNIV,DEPT MATH,FT COLLINS,CO 80523
关键词
D O I
10.1016/0022-247X(89)90196-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:538 / 558
页数:21
相关论文
共 16 条
[1]   Boundary value and expansion problems of ordinary linear differential equations [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1908, 9 (1-4) :373-395
[2]  
Coddington EA, 1955, THEORY ORDINARY DIFF
[3]  
DANFORD N, 1971, LINEINYE OPERATORY S
[4]  
Hoffman S., 1957, THESIS YALE U
[5]   SPECTRAL THEORY FOR FREDHOLM OPERATORS [J].
KANIEL, S ;
SCHECHTER, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (04) :423-&
[6]  
Kantorovich LV, 1982, FUNCTIONAL ANAL
[7]   SPECTRAL DECOMPOSITION OF A HILBERT-SPACE BY A FREDHOLM OPERATOR [J].
LANG, P ;
LOCKER, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 79 (01) :9-17
[8]   DENSENESS OF THE GENERALIZED EIGENVECTORS OF AN H-S DISCRETE OPERATOR [J].
LANG, P ;
LOCKER, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :316-329
[9]  
LANG P, IN PRESS J MATH ANAL
[10]  
LANG P, 1989, J MATH ANAL APPL, V140