SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

被引:0
作者
Fugere, B. -J. [1 ]
Gaboury, S. [2 ]
Tremblay, R. [2 ]
机构
[1] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 5L0, Canada
[2] Univ Quebec Chicoutimi, Dept Math & Comp Sci, Chicoutimi, PQ G7H 2B1, Canada
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2012年 / 4卷 / 04期
关键词
Bernoulli numbers and polynomials; Euler numbers and polynomials; Genocchi numbers and polynomials; Apostol-Bernoulli polynomials; Apostol-Euler polynomials; Apostol-Genocchi polynomials; Generalized power sums; Generalized alternating sums;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to obtain several series identities involving some classes of generalized Apostol-Bernoulli and Apostol-Euler polynomials introduced lately by Srivastava et al. in [16, 17] as well as the generalized sum of integer powers, the generalized alternating sum and the analogues of the expansions of the hyperbolic tangent and the hyperbolic cotangent. The method used is that of generating functions. It can be found that many identities recently obtained are special cases of our results.
引用
收藏
页码:76 / 90
页数:15
相关论文
共 23 条
[1]   On multiple sums of special functions [J].
Brychkov, Yu. A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (12) :877-884
[2]  
Comtet L., 1974, ADV COMBINATORICS AR
[3]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA
[4]  
Hansen E. R., 1975, TABLE SERIES PRODUCT
[5]   Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums [J].
Liu, Hongmei ;
Wang, Weiping .
DISCRETE MATHEMATICS, 2009, 309 (10) :3346-3363
[6]   Some series identities involving the generalized Apostol type and related polynomials [J].
Lu, Da-Qian ;
Srivastava, H. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) :3591-3602
[7]  
Luke Y. L., 1969, SPECIAL FUNCTIONS TH, V1
[8]  
Luo Q.-M., 2009, GEN MATH, V17, P113
[9]   Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions [J].
Luo, Qiu-Ming .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (04) :917-925
[10]  
Luo QM, 2011, OSAKA J MATH, V48, P291