Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption

被引:3
作者
Franz, Douglas M. [1 ]
Djulbegovic, Mak [1 ]
Pham, Tony [1 ]
Space, Brian [1 ]
机构
[1] Univ S Florida, Dept Chem, 4202 East Fowler Ave,CHE205, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
metal-organic framework; simulation; gas sorption; carbon dioxide; acetylene; gas separation;
D O I
10.3934/matersci.2018.2.226
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grand canonical Monte Carlo (GCMC) simulations of carbon dioxide (CO2) and acetylene (C2H2) sorption were performed in MPM-1-Cl and MPM-1-Br, two robust molecular porous materials (MPMs) that were synthesized by the addition of adenine to CuX2 (X = Cl or Br) by solvent diffusion. Previous experimental studies revealed that both MPMs are selective for C2H2 over CO2 [Xie DY, et al. (2017) CIESC J 68: 154-162]. Simulations in MPM-1-Cl and MPM-1-Br were carried out using polarizable and nonpolarizable potentials of the respective sorbates; this was done to investigate the role of explicit induction on the gas sorption mechanism in these materials. The calculated sorption isotherms and isosteric heat of adsorption (Qst) values for both sorbates are in reasonable agreement with the corresponding experimental measurements, with simulations using the polarizable models producing the closest overall agreement. The modeled CO2 binding site in both MPMs was discovered as sorption between the halide ions of two adjacent [Cu-2(adenine) 4X(2)](2+) (X = Cl, Br) units. In the case of C2H2, it was found that the sorbate molecule prefers to align along the X-Cu-Cu-X axis of the copper paddlewheels such that each H atom of the C2H2 molecule can interact favorably with the coordinated X ions. The simulations revealed that both MPMs exhibit stronger interactions with C2H2 than CO2, which is consistent with experimental findings. The effect of halogen substitution toward CO2 and C2H2 sorption in two isostructural MPMs was also elucidated in our theoretical studies.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 59 条
[1]   Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A [J].
Akten, ED ;
Siriwardane, R ;
Sholl, DS .
ENERGY & FUELS, 2003, 17 (04) :977-983
[2]   Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks [J].
Bae, Youn-Sang ;
Mulfort, Karen L. ;
Frost, Houston ;
Ryan, Patrick ;
Punnathanam, Sudeep ;
Broadbelt, Linda J. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
LANGMUIR, 2008, 24 (16) :8592-8598
[3]   An accurate and transferable intermolecular diatomic hydrogen potential for condensed phase simulation [J].
Belof, Jonathan L. ;
Stern, Abraham C. ;
Space, Brian .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (08) :1332-1337
[4]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[5]   Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores [J].
Caskey, Stephen R. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :10870-+
[6]   Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials [J].
Chen, Kai-Jie ;
Scott, Hayley S. ;
Madden, David G. ;
Pham, Tony ;
Kumar, Amrit ;
Bajpai, Alankriti ;
Lusi, Matteo ;
Forrest, Katherine A. ;
Space, Brian ;
Perry, John J. ;
Zaworotko, Michael J. .
CHEM, 2016, 1 (05) :753-765
[7]   A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation [J].
Cho, So-Hye ;
Ma, Baoqing ;
Nguyen, SonBinh T. ;
Hupp, Joseph T. ;
Albrecht-Schmitt, Thomas E. .
CHEMICAL COMMUNICATIONS, 2006, (24) :2563-2565
[8]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[9]  
Collins D.J., 2010, METAL ORGANIC FRAMEW, P249
[10]   Hydrogen storage in metal-organic frameworks [J].
Collins, David J. ;
Zhou, Hong-Cai .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3154-3160