Inactivators of cysteine proteinases (CPs) were tested as inhibitors of bone resorption in vitro and in vivo. The following four CP inactivators were tested: Ep475, a compound with low membrane permeability which inhibits cathepsins B, L, S, H, and calpain; Ep453, the membrane-permeant prodrug of Ep475; CA074, a compound with low membrane permeability which selectively inactivates cathepsin B; and CA074Me, the membrane-permeant prodrug of CA074. The test systems consisted of 1) monitoring the release of radioisotope from prelabelled mouse calvarial explants and 2) assessing the extent of bone resorption in an isolated osteoclast assay using confocal laser microscopy. Ep453, Ep475, and CA074Me inhibited both stimulated and basal bone resorption in vitro while CA074 was without effect; the inhibition was reversible and dose dependent. None of the inhibitors affected protein synthesis, DNA synthesis, the PTH-enhanced secretion of beta-glucuronidase, and N-acetyl-beta-glucosaminidase, or the spontaneous release of lactate dehydrogenase. Ep453, Ep475, and CA074Me dose-dependently inhibited the resorptive activity of isolated rat osteoclasts cultured on bone slices with a maximal effect at 50 mu M. The number of resorption pits and their mean volume was reduced, whilst the mean surface area remained unaffected. Again, CA074 was without effect. Ep453, Ep475, and CA074Me, but not CA074, when administered subcutaneously at a dose of 60 mu g/g body weight inhibited bone resorption in vivo as measured by an in vivo/in vitro assay, by about 20%. This study demonstrates that cathepsins B, L, and/or S are involved in bone resorption in vitro and in vivo. Whilst cathepsin L and/or S act extracellularly, and possibly intracellularly, cathepsin B mediates its effect intracellularly perhaps through the activation of other proteinases involved in subosteoclastic collagen degradation. (C) 1994 Wiley-Liss, Inc.