Robust design of bipolar wave cellular neural network with applications

被引:6
|
作者
Liu, Jinzhu [1 ,2 ]
Min, Lequan [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Appl Sci, Beijing 100083, Peoples R China
关键词
cellular neural network; CNN; robust design; bipolar wave; BW; optimal template;
D O I
10.1504/IJMIC.2010.035284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The robust design for cellular neural network (CNN) is an important issue, since no template parameters of CNN can be realised exactly in practice. Bipolar wave (BW) CNN is able to simulate the phenomena that black wave and white wave propagate on grey cells, collide and keep balance finally. Firstly, this paper establishes a theorem for designing the robust templates for BW CNN. The theorem provides a group of parameter inequalities to determine the template parameter intervals within which the templates can implement corresponding functions. Secondly, this paper sets up an optimal model for searching the template with maximum robustness for BW CNN. A set of optimal templates is obtained by using the method of brute-force search. Finally, one simulation example is provided to illustrate the effectiveness of the theorem and optimal model. The example also shows that the BW CNN can be used to segment two kinds of point sets in image.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] ROBUST DESIGNS FOR TEMPLATES OF DIRECTIONAL EXTRACTION CELLULAR NEURAL NETWORK WITH APPLICATIONS
    Liu, Jinzhu
    Min, Lequan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (01) : 87 - 100
  • [2] The cloning template design of a cellular neural network
    Yin, CL
    Wan, JL
    Lin, H
    Chen, WK
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (06): : 903 - 909
  • [3] DESIGN TECHNIQUE OF CELLULAR NEURAL-NETWORK
    NAKAI, K
    USHIDA, A
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1995, 78 (03): : 97 - 107
  • [4] A New Robust Design Method Using Neural Network
    Shin, Sangmun
    Thanh-Tra Hoang
    Le, Tuan-Ho
    Lee, Moo-Yeon
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2016, 11 (01) : 68 - 78
  • [5] FPGA Based Cellular Neural Network Optimization: From Design Space to System
    Liu, Zhongyang
    Luo, Shaoheng
    Xu, Xiaowei
    Shi, Yiyu
    Zhuo, Cheng
    PROCEEDINGS OF NEUROMORPHIC COMPUTING SYMPOSIUM (NCS 2017), 2017,
  • [6] A kind of non-autonomous cellular neural network and its applications
    Cai Huan
    Min Lequan
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 1036 - 1040
  • [7] Modular Cellular Neural Network Structure for Wave-Computing-Based Image Processing
    Karami, Mojtaba
    Safabakhsh, Reza
    Rahmati, Mohammad
    ETRI JOURNAL, 2013, 35 (02) : 207 - 217
  • [8] Design of nonlinear cellular neural network filters for detecting linear trajectory signals
    Muikaichi, M
    Kondo, K
    Hamada, N
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (09) : 1655 - 1661
  • [9] Robust Project Network Design
    de Orue, David A. Ortiz
    Taylor, John E.
    Chanmeka, Arpamart
    Weerasooriya, Runi
    PROJECT MANAGEMENT JOURNAL, 2009, 40 (02) : 81 - 93
  • [10] Dynamical behaviour of a cellular neural network
    Wang, HX
    He, C
    ACTA PHYSICA SINICA, 2003, 52 (10) : 2409 - 2414