A PARTIAL M = (2K+1)-CYCLE SYSTEM OF ORDER-N CAN BE EMBEDDED IN AN M-CYCLE SYSTEM OF ORDER (2N+1)M

被引:13
作者
LINDNER, CC
RODGER, CA
机构
[1] Department of Algebra, Combinatorics and Analysis, Auburn University, Auburn
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(93)90331-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization of Cruse's Theorem on embedding partial idempotent commutative latin squares developed and used to show that a partial m = (2k + 1)-cycle system of order n can be embedded in an m-cycle system of order tm for every odd t greater-than-or-equal-to (2n + 1).
引用
收藏
页码:151 / 159
页数:9
相关论文
共 10 条
[1]  
ANDERSEN LD, 1980, J LOND MATH SOC, V41, P557
[2]   THE INFLUENCE OF SHRINKAGE CRACKS ON PORE-WATER PRESSURES WITHIN A CLAY EMBANKMENT [J].
ANDERSON, MG ;
HUBBARD, MG ;
KNEALE, PE .
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY, 1982, 15 (01) :9-14
[3]  
[Anonymous], 1847, CAMBRIDGE DUBLIN MAT
[4]  
Cruse A. B., 1974, Journal of Combinatorial Theory, Series A, V16, P18, DOI 10.1016/0097-3165(74)90068-5
[5]  
LINDNER C. C., 1988, J COMBIN MATH COMBIN, V3, P65
[6]   SMALL EMBEDDINGS FOR PARTIAL CYCLE SYSTEMS OF ODD LENGTH [J].
LINDNER, CC ;
RODGER, CA ;
STINSON, DR .
DISCRETE MATHEMATICS, 1990, 80 (03) :273-280
[7]   PARTIAL STEINER TRIPLE SYSTEM OF ORDER ETA CAN BE EMBEDDED IN A STEINER TRIPLE SYSTEM OF ORDER 6N + 3 [J].
LINDNER, CC .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (03) :349-351
[8]  
LINDNER CC, 1992, CONT DESIGN THEORY C
[9]   EMBEDDING PARTIAL MENDELSOHN TRIPLE-SYSTEMS [J].
RODGER, CA .
DISCRETE MATHEMATICS, 1987, 65 (02) :187-196
[10]  
TREASH C, 1971, J COMB THEORY A, V10, P259