ON THE RELATIVE EQUILIBRIUM CONFIGURATIONS IN THE PLANAR FIVE-BODY PROBLEM

被引:0
作者
Siluszyk, Agnieszka [1 ]
机构
[1] Univ Podlasie, Konarskiego 2, PL-08110 Siedlce, Poland
关键词
planar five-body problem; relative equilibrium; central configuration; Grebenicov-Elmabsout model;
D O I
10.7494/OpMath.2010.30.4.495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number of central configurations in the Grebenicov-Elmabsout model of the planar five-body problem is estimated. An appropriate rational parameterization is used to reduce the equations defining such configurations to some polynomial ones. For the restricted five-body problem a sharp estimation is given by using the Sturm separation theorem.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 24 条
  • [1] Albouy A., 1996, CONT MATH, V198, P131, DOI [10.1090/conm/198/02494, DOI 10.1090/CONM/198/02494]
  • [2] Relative equilibrium of polygon type
    Bang, D
    Elmabsout, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (04): : 243 - 248
  • [3] The restricted three body problem revisited
    Barwicz, Weronika
    Zoladek, Henryk
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 663 - 672
  • [4] ELMABSOUT B, 1991, CR ACAD SCI II, V312, P467
  • [5] EXISTENCE OF CERTAIN RELATIVE-EQUILIBRIUM CONFIGURATIONS IN THE N-BODY PROBLEM
    ELMABSOUT, B
    [J]. CELESTIAL MECHANICS, 1987, 41 (1-4): : 131 - 151
  • [6] Fortuna Z., 1993, NUMERICAL METHODS
  • [7] Grebenicov E.A., 1988, MAT MODELIR, V10, P74
  • [8] Grebenicov E.A., 2002, COMPUTER ALGEBRA MET
  • [9] Grebenicov E.A., 1998, ROM ASTRON J, V10, p[1, 13]
  • [10] Finiteness of relative equilibria of the four-body problem
    Hampton, M
    Moeckel, R
    [J]. INVENTIONES MATHEMATICAE, 2006, 163 (02) : 289 - 312