Interphotoreceptor matrix-poly(epsilon-caprolactone) composite scaffolds for human photoreceptor differentiation

被引:11
作者
Baranov, Petr [1 ]
Michaelson, Andrew [2 ]
Kundu, Joydip [2 ]
Carrier, Rebecca L. [2 ]
Young, Michael [1 ]
机构
[1] Harvard Med Sch, Schepens Eye Res Inst, Massachusetts Eye & Ear, 20 Staniford St, Boston, MA 02114 USA
[2] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
关键词
Retina; photoreceptors; interphotoreceptor matrix; polycaprolactone;
D O I
10.1177/2041731414554139
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Tissue engineering has been widely applied in different areas of regenerative medicine, including retinal regeneration. Typically, artificial biopolymers require additional surface modification (e.g. with arginine-glycine-aspartate-containing peptides or adsorption of protein, such as fibronectin), before cell seeding. Here, we describe an alternative approach for scaffold design: the manufacture of hybrid interphotoreceptor matrix-poly (epsilon-caprolactone) scaffolds, in which the insoluble extracellular matrix of the retina is incorporated into a biodegradable polymer well suited for transplantation. The incorporation of interphotoreceptor matrix did not change the topography of polycaprolactone film, although it led to a slight increase in hydrophilic properties (water contact angle measurements). This hybrid scaffold provided sufficient stimuli for human retinal progenitor cell adhesion and inhibited proliferation, leading to differentiation toward photoreceptor cells (expression of Crx, Nrl, rhodopsin, ROM1). This scaffold may be used for transplantation of retinal progenitor cells and their progeny to treat retinal degenerative disorders.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Human interphotoreceptor matrix contains serum albumin and retinol-binding protein [J].
Adler, AJ ;
Edwards, RB .
EXPERIMENTAL EYE RESEARCH, 2000, 70 (02) :227-234
[2]   Growth kinetics and transplantation of human retinal progenitor cells [J].
Aftab, Unber ;
Jiang, Caihui ;
Tucker, Budd ;
Kim, Ji Yeon ;
Klassen, Henry ;
Miljan, Erik ;
Sinden, John ;
Young, Michael .
EXPERIMENTAL EYE RESEARCH, 2009, 89 (03) :301-310
[3]  
Avichezer D, 2000, INVEST OPHTH VIS SCI, V41, P127
[4]  
Baranov P, 2013, TISSUE ENG PART C-ME, V19, P265, DOI [10.1089/ten.tec.2012.0217, 10.1089/ten.TEC.2012.0217]
[5]   Subretinal Implantation of Electrospun, Short Nanowire, and Smooth Poly(ε-caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes [J].
Christiansen, A. T. ;
Tao, S. L. ;
Smith, M. ;
Wnek, G. E. ;
Prause, J. U. ;
Young, M. J. ;
Klassen, H. ;
Kaplan, H. J. ;
la Cour, M. ;
Kiilgaard, J. F. .
STEM CELLS INTERNATIONAL, 2012, 2012
[6]   Chitosan nanofiber scaffold enhances hepatocyte adhesion and function [J].
Chu, Xue-Hui ;
Shi, Xiao-Lei ;
Feng, Zhang-Qi ;
Gu, Zhong-Ze ;
Ding, Yi-Tao .
BIOTECHNOLOGY LETTERS, 2009, 31 (03) :347-352
[7]   Active screen plasma surface modification of polycaprolactone to improve cell attachment [J].
Fu, Xin ;
Sammons, Rachel L. ;
Bertoti, Imre ;
Jenkins, Mike J. ;
Dong, Hanshan .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (02) :314-320
[8]   Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering [J].
Ghasemi-Mobarakeh, Laleh ;
Prabhakaran, Molamma P. ;
Morshed, Mohammad ;
Nasr-Esfahani, Mohammad Hossein ;
Ramakrishna, S. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (08) :1129-1136
[9]   Decellularization of tissues and organs [J].
Gilbert, TW ;
Sellaro, TL ;
Badylak, SF .
BIOMATERIALS, 2006, 27 (19) :3675-3683
[10]   BIOCHEMICAL-CHARACTERIZATION OF THE MAJOR PEANUT-AGGLUTININ-BINDING GLYCOPROTEINS IN VERTEBRATE RETINAE [J].
HAGEMAN, GS ;
JOHNSON, LV .
JOURNAL OF COMPARATIVE NEUROLOGY, 1986, 249 (04) :499-&